
IDENTITY Federation With Ceph OBJECT Storage

Seth Cagampang
Sr. Engineer, OSNEXUS

IDENTITY Federation

WHAT IS User Identity Federation?

● Allows users to authenticate with one identity provider (IdP), but access
services and resources hosted by another system without creating
separate accounts in each system.

https://learn.microsoft.com/en-us/azure/architecture/patterns/federated-identity

Why is it useful?

● Centralized ID management
● Improved security
● Better user experience
● Easier compliance

https://learn.microsoft.com/en-us/azure/architecture/patterns/federated-identity

Problem CASE

● Keycloak can serve as an intermediary IdP to issue access tokens to Ceph RGW instead

● User wants to use Azure directly as an Identity Provider (IdP) for Ceph RGW
● Issue: https://tracker.ceph.com/issues/54562

Ceph 18.2.4 Reef ‘x5c’ certificate parsing bug that causes Ceph RGW STS
AssumeRoleWithWebIdentity to fail (backport fix in progress latest activity 04/28/2025)

Proposed Solution:

https://tracker.ceph.com/issues/54562

IDENTITY Federation

OpenID Connect (OIDC)

● Protocol to authenticate users and issue access tokens
and ID tokens

● ID token - who the user is
● Access token - what the user can access

Secure Token Service (STS)

● Mechanism that allows temporary access credentials to
be issued to trusted identities

● Session Token - temporary credentials for making S3 API
calls.

● Relying Party (e.g. Ceph RGW)
● Identity Provider (e.g., Keycloak or Azure AD)
● End User
● OIDC Discovery

Key Components

Ceph RGW JSON WEB KEY SET (JWKS) VALIDATION

● Verify token signature **
● Check issuer (iss) and audience (aud)
● Validate any claims (e.g. app_id)
● Enforce IAM (identity and access management) role

trust policy

IDENTITY Federation

Azure AD
● Microsoft’s Cloud-based identity and access management

(IAM) service

What Can AZure AD do?

● Authentication
● Authorization
● Single Sign-On (SSO)
● Multi-Factor Authentication (MFA)
● Supports Protocols OAuth2, OIDC, and SAML

IDENTITY Federation

Keycloak

● Open-source Identity and Access Management (IAM)
solution

What Can keycloak do?

● Authorization Services
● Single Sign-On (SSO)
● Supports Protocols OIDC, and SAML
● User Federation
● Robust Token Management

IDENTITY Federation

How does it work?

● Service requires an access token (Ceph RGW)
● User requests token from trusted IdP (Azure) via Single Sign On (SSO)
● IdP issues a token
● A broker (Keycloak) can process and translate that identity and issues its own OIDC token
● Service (Ceph RGW) verifies the token against broker (Keycloak) and issues a temporary session token

Setup Azure as SSO Idp for keycloak

Setup Azure as SSO Idp for keycloak

Setup Azure as SSO Idp for keycloak

Setup Azure as SSO Idp for keycloak

Setup Azure as SSO Idp for keycloak

Setup Azure as SSO Idp for keycloak

Keycloak Version: 26.1.4

Setup Azure as SSO Idp for keycloak

Setup Azure as SSO Idp for keycloak

Setting up Keycloak as IDP for CEph RGW

Setting up Keycloak as IDP for CEph RGW

Setting up Keycloak as IDP for CEph RGW

Setting up Keycloak as IDP for CEph RGW

Get Access Token:

Using Access token with CEPH RGW STS

https://github.com/OSNEXUS/KeyCloak-w-Ceph-RADOSGW/tree/master

GITHUB

Access tokens can be requested with grant type username and password via POST request (python3 requests, curl, etc.)

curl -k -v -X POST \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "scope=openid" \
-d "grant_type=password" \
-d "client_id=$KC_CLIENT" \
-d "client_secret=$KC_CLIENT_SECRET" \
-d "username=$KC_USERNAME" \
-d "password=$KC_PASSWORD" \

"http://$KC_SERVER/realms/$KC_REALM/protocol/openid-connect/token"

https://github.com/OSNEXUS/KeyCloak-w-Ceph-RADOSGW/tree/master

Using Access token with CEPH RGW STS

Create Ceph RGW Users for OIDC Management and STS Client

radosgw-admin --uid TESTUID1 --display-name "iam_user" --access_key TESTUID1 --secret test123 user create
radosgw-admin caps add --uid="TESTUID1" --caps="oidc-provider=*"
radosgw-admin caps add --uid="TESTUID1" --caps="roles=*"

radosgw-admin --uid TESTUID2 --display-name "sts_client_user" --access_key TESTUID2 --secret test321 user create

radosgw-admin caps add --uid="TESTUID2" --caps="roles=*"

IAM User - Creates OIDC Provider object in CEPH RGW and defines IAM roles.

STS Client - Consumes access token, to receive a session token from OIDC Provider

Using Access token with CEPH RGW STS

Generate IdP Cert Thumbprints

● Using the ‘openid-configuration’ URI, you can find the Json Web Keys (JWK) URI
● Create a certificate for each JWK ‘x5c’ cert by adding begin and end certificate delimiters and

saving it to a file.
● Generate ‘x509’ thumbprint.

openssl x509 -in certificate1.crt -fingerprint -noout > thumbprint.txt

Using Access token with CEPH RGW STS

Create IAM Client and OIDC Provider

● Create ‘iam’ client using ‘iam_user’ credentials for your Ceph RGW endpoint
● Register Keycloak as an OIDC Provider for Ceph using create_open_id_connect_provider()

try:
 oidc_response = iam_client.create_open_id_connect_provider(
 Url=oidc_app_endpoint,
 ClientIDList=[
 oidc_client_id
],
 ThumbprintList=ThumbprintListIn
)
 print("Successfully created open id connect provider...")
except Exception as e:
 print(e)

● Set a role policy for “S3Access” using “iam_client.put_role_policy()” to allow those with this role to perform all
actions under S3 API (emulated by Ceph RGW)

Using Access token with CEPH RGW STS

Add “S3Access” Policy

● Using the “iam_client.create_role()”, create “S3Access” with a policy document that allows only tokens issued Keycloak federated realm to
assume the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": [
 "arn:aws:iam:::oidc-provider/<key-cloak-host>:8080/realms/<realm name>"
]
 },
 "Action": [
 "sts:AssumeRoleWithWebIdentity"
],
 "Condition": {
 "StringEquals": {
 "<key-cloak-host>:8080/realms/<realm name>:app_id": "account"
 }
 }
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::*"
 }
}

Using Access token with CEPH RGW STS

Create STS Client and Use Access Token to AssumeRoleWithWebIdentity

● Using the ‘boto3.client’ create ‘sts’ client using ‘sts_user’ credentials for your Ceph RGW endpoint
● With the ‘sts_client’ created we can try to assume the “S3Access” role using the access token issued by Keycloak.

try:
 response = sts_client.assume_role_with_web_identity(
 RoleArn=roleResponse['Role']['Arn'],
 RoleSessionName='Bob',
 DurationSeconds=3600,
 WebIdentityToken=<Web Token>
)
except Exception as e:
 print(e)

● “response” contains session token if access token validation is successful.

Using Access token with CEPH RGW STS

Create Ceph RGW Client

● Session token can be used by “s3” client, which can perform s3 actions.

try:
 s3client = boto3.client('s3',
 aws_access_key_id = response['Credentials']['AccessKeyId'],
 aws_secret_access_key = response['Credentials']['SecretAccessKey'],
 aws_session_token = response['Credentials']['SessionToken'],
 endpoint_url=<S3 URL>,
 region_name=<S3 region>)
 bucket_name = 'my-bucket'
 s3bucket = s3client.create_bucket(Bucket=bucket_name)
except Exception as e:
 print(e)

User Authorization from Keycloak

● Authentication is handled by Azure AD
● Authorization can be centralized in Keycloak, Azure, or split depending on your goals

User Access Control

● “Mapper” feature inject roles, groups, custom claims, etc for federated users.
● Access tokens issued will be issued with embedded mappings
● Ceph RGW uses those claims to control access.

Recommended: Centralized Authorization in Keycloak

WHY?
● Control fine-grained authorization inside Keycloak
● Keeps Azure AD simpler
● Better for multi-IdP scenarios (e.g., adding Google, GitHub later)
● Ceph RGW doesn’t need to know about Azure AD

Thank YOU for your time!
Sources:

Azure OIDC:
https://learn.microsoft.com/en-us/entra/identity-platform/v2-protocols-oidc
Keycloak w/ RadosGW docs:
https://docs.ceph.com/en/latest/radosgw/keycloak/
Boto3 Docs:
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sts.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
SSO for Keycloak:
https://docs.getvisibility.com/enterprise-setup/authentication/single-sign-on-sso/using-azure-ad-as-keycloak-identity-provider
Keycloak Getting Started:
https://www.keycloak.org/getting-started/getting-started-docker

Additional Guides:
Github Scripts:
https://github.com/OSNEXUS/KeyCloak-w-Ceph-RADOSGW
OSNEXUS Wiki:
https://wiki.osnexus.com/index.php?title=KeyCloak_Integration
https://wiki.osnexus.com/index.php?title=KeyCloak_Azure_Federation

https://learn.microsoft.com/en-us/entra/identity-platform/v2-protocols-oidc
https://docs.ceph.com/en/latest/radosgw/keycloak/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sts.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://docs.getvisibility.com/enterprise-setup/authentication/single-sign-on-sso/using-azure-ad-as-keycloak-identity-provider
https://www.keycloak.org/getting-started/getting-started-docker
https://github.com/OSNEXUS/KeyCloak-w-Ceph-RADOSGW
https://wiki.osnexus.com/index.php?title=KeyCloak_Integration
https://wiki.osnexus.com/index.php?title=KeyCloak_Azure_Federation

