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Abstract

Ceph: Reliable, Scalable, and High-performance DistributedStorage

by

Sage A. Weil

As the size and performance requirements of storage systems have increased, file

system designers have looked to new architectures to facilitate system scalability. The emerging

object-based storage paradigm diverges from server-based (e. g. NFS) and SAN-based storage

systems by coupling processors and memory with disk drives, allowing systems to delegate low-

level file system operations (e. g. allocation and scheduling) to object storage devices (OSDs)

and decouple I/O (read/write) from metadata (file open/close) operations.Even recent object-

based systems inherit a variety of decades-old architectural choices going back to early UNIX

file systems, however, limiting their ability to effectively scale.

This dissertation shows that device intelligence can be leveraged to providereliable,

scalable, and high-performance file service in a dynamic cluster environment. It presents a dis-

tributed metadata management architecture that provides excellent performance and scalability

by adapting to highly variable system workloads while tolerating arbitrary node crashes. A

flexible and robust data distribution function places data objects in a large, dynamic cluster of

storage devices, simplifying metadata and facilitating system scalability, while providing a uni-

form distribution of data, protection from correlated device failure, and efficient data migration.

This placement algorithm facilitates the creation of a reliable and scalable object storage ser-

vice that distributes the complexity of consistent data replication, failure detection, and recovery



across a heterogeneous cluster of semi-autonomous devices.

These architectural components, which have been implemented in the Ceph distributed

file system, are evaluated under a variety of workloads that show superior I/O performance,

scalable metadata management, and failure recovery.
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Chapter 1

Introduction

System designers have long sought to improve the performance of file systems, which

have proved critical to the overall performance of an exceedingly broad class of applications.

The scientific and high-performance computing communities in particular have driven advances

in the performance and scalability of distributed storage systems, typically predicting more

general purpose needs by a few years. Traditional solutions, exemplified by NFS [72], provide a

straightforward model in which a server exports a file system hierarchy that clients can map into

their local name space. Although widely used, the centralization inherent in the client/server

model has proven a significant obstacle to scalable performance.

More recent distributed file systems have adopted architectures based onobject-based

storage, in which conventional hard disks are replaced with intelligent object storage devices

(OSDs) which combine a CPU, network interface, and local cache with an underlying disk or

RAID [14, 30, 31, 104, 107]. OSDs replace the traditional block-levelinterface with one in

which clients can read or write byte ranges to much larger (and often variably sized) named
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objects, distributing low-level block allocation decisions to the devices themselves. Clients

typically interact with a metadata server (MDS) to perform metadata operations(open, rename),

while communicating directly with OSDs to perform file I/O (reads and writes), significantly

improving overall scalability.

Systems adopting this model continue to suffer from scalability limitations due to

little or no distribution of the metadata workload. Continued reliance on traditionalfile system

principles like allocation lists and inode tables and a reluctance to delegate intelligence to the

OSDs have further limited scalability and performance, and increased the cost of reliability.

I have developed a prototype for Ceph [100], a distributed file system that provides

excellent performance, reliability, and scalability. The architecture is based on the assumption

that systems at the petabyte scale are inherently dynamic: large systems are inevitably built

incrementally, node failures are the norm rather than the exception, and thequality and character

of workloads are constantly shifting over time.

Ceph decouples data and metadata operations by eliminating file allocation tables

and replacing them with a novel generating function. This allows Ceph to leverage the intel-

ligence present in OSDs to distribute the complexity surrounding data access, update serial-

ization, replication and reliability, failure detection, and recovery. Ceph utilizes an adaptive

distributed metadata cluster architecture that streamlines common metadata operations while

dramatically improving the scalability of metadata access, and with it, the scalability ofthe

entire system. I discuss the goals and workload assumptions motivating choices in the design

of the architecture, analyze their impact on system scalability, performance, and reliability, and

relate experiences in implementing a functional system prototype.
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1.1 Contributions

The thesis of this dissertation is that device intelligence can be leveraged to provide

reliable, scalable, and high-performance file service in a dynamic cluster environment.

The primary contributions of this dissertation are threefold.

First, I present a distributed metadata management architecture that provides excellent

performance and scalability while seamlessly tolerating arbitrary node crashes. Ceph’s MDS

diverges from conventional metadata storage techniques, and in doing so facilitates adaptive file

system and workload partitioning among servers, improved metadata availability, and failure

recovery. Specifically, file system metadata updates are initially written to large, lazily-trimmed

per-MDS journals that absorb temporary and repetitive updates. File (inode) metadata is then

embedded in the file system namespace and stored inside per-directory objects for efficient

read access and metadata prefetching. I present a comparative analysis of distributed metadata

partitioning techniques, and describe the novel dynamic subtree partitioningapproach used by

Ceph. Notably, my MDS defines the namespace hierarchy in terms of directory fragments,

facilitating fine-grained load distribution even for large or busy directories, and implements a

traffic control mechanism for dispersing load generated by flash crowds—sudden concurrent

access by thousands of client nodes—across multiple nodes in the MDS cluster.

The second contribution of this work is a robust hierarchical data distribution function

that places data in a large distributed storage system. When used in place of conventional al-

location tables, the algorithm efficiently addresses a range of critical storage-related placement

issues, including statistically uniform data distribution, correlated failure anddata safety, and
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data migration in dynamically changing storage clusters. Specifically, the algorithm places sets

of data objects (either object replicas, or parity or erasure coded fragments) in a hierarchy of

storage devices using a flexible rule language. The flexible hierarchicalcluster description fa-

cilitates an adjustable balance between extremely efficient placement calculations and mapping

stability when devices are added or removed from the cluster. It further provides the ability to

enforce the separation of replicas across user-defined failure domains, limiting exposure to data

loss due to correlated failures.

My third contribution is a distributed object storage architecture that leverages de-

vice intelligence to provide a reliable and scalable storage abstraction with minimaloversight.

Specifically, I describe an efficient, scalable, and low-overhead cluster management protocol

that facilitates consistent and coherent data access through the propagation of small cluster

maps that specify device membership and data distribution. This allows a dynamiccluster

of semi-autonomous OSDs to self-manage consistent data replication, failuredetection, and

failure recovery while providing the illusion of a single logical object store with direct, high-

performance client access to data.

These contributions have been implemented as part of the Ceph file system proto-

type. The prototype is written in roughly 40,000 semicolon-lines of C++ code and has been

released as open source under the Lesser GNU Public License (LGPL)to serve as a reference

implementation and research platform.
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1.2 Outline

The remainder of this dissertation is structured as follows.

Chapter 2 introduces past and existing approaches to file system design.General ar-

chitectural issues affecting performance, scalability, and reliability are introduced, and in certain

cases related to Ceph’s contributions. In general, however, specifically related work is discussed

in context in the chapters that follow.

Chapter 3 introduces the Ceph architecture and key design features. The overall op-

eration of the system is described from the perspective of a client performing basic file system

operations in order to provide an overview of how the various system components interact.

Chapter 4 describes the design, implementation, and performance characteristics of

Ceph’s metadata server (MDS). I focus on the design implications of Ceph’s unconventional

approach to file (inode) storage and update journaling on metadata storage, dynamic workload

distribution, and failure recovery. A variety of static file system snapshotsand workload traces

are analyzed to motivate design decisions and performance analysis, andperformance is eval-

uated under a range of micro-benchmarks and workloads under both normal-use and failure

scenarios.

Chapter 5 describes CRUSH, the special-purpose data placement algorithm used by

Ceph to distribute data among object storage devices. Specifically, I address the problem of

managing data layout in large, dynamic clusters of devices by eliminating conventional alloca-

tion maps and replacing them with a low-costfunction. A variety of issues related to scalability,

data safety, and performance are considered.
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Chapter 6 introduces RADOS, Ceph’s Reliable Autonomic Distributed Object Store.

RADOS provides an extremely scalable storage cluster management platformthat exposes a

simple object storage abstraction. System components utilizing the object storecan expect

scalable, reliable, and high-performance access to objects without concerning themselves with

the details of replication, data redistribution (when cluster membership expands or contracts),

failure detection, or failure recovery.

Chapter 7 describes EBOFS, the low-level object storage library utilized by RADOS

to efficiently manage collections of objects on locally attached disks.

Finally, Chapter 8 provides some concluding remarks and describes avenues of con-

tinued research.
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Chapter 2

Related Work

This research draws upon a large body of experience and researchwith file and storage

systems. This includes experience with local file systems (which interact with locally attached

disks), network file systems that interact with a remote server, and a rangeof distributed file

system architectures in which file system data is spread across multiple hosts.

2.1 Local File Systems

File system design over the past three decades has been heavily influenced by the

original Unix file system, and the Fast File System (FFS) [65] found in BSD Unix. The in-

terface and behavior—semantics—of these early file systems formed the basis of the POSIX

SUS (Single Unix Specification) standard [12] to which most modern systems and applications

conform.

BSD’s FFS, like most “local” file systems, is designed to operate on a locally attached

hard disk storing fixed-size sectors or blocks. (In contrast, Ceph is a “cluster” file system that
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operates on a large number of hosts connected by a network.) Hard disksat the time were

slow to “seek” or position themselves over a given block, but once positioned could read data

relatively quickly. To avoid positioning delays as much as possible, FFS featured cylinder

groups, representing localized regions of disk falling within the same cylindrical regions of the

spinning hard disk platter. Related data and metadata were stored in the same cylinder group,

such that most seeks involved minimal repositioning of the disk arm.

Over the past few decades, disk performance has increased significantly. However,

positioning latencies have dropped much more slowly than disk transfer rateshave increased,

making careful layout of data on disk even more important than before. The desire to reduce

position latencies motivated the design of the Log-structured File System (LFS)in the Sprite

network operating system [26, 78]. LFS avoided positioning delays for write workloads by

laying out new data on disk in a sequential log. Metadata structures were periodically flushed to

disk (in the log) to allow previously written data to be located and re-read. However, in order to

reclaim disk space from deleted files, LFS required a “cleaner” to relocate partially deallocated

regions of the log, which degraded performance under many workloads[87, 88].

DualFS [73] separates data and metadata storage—not unlike object-based cluster file

systems—by writing metadata to a separate device using an LFS-style log, mitigating cleaner

effects by eliminating bulky file data. Although—as with LFS—a special inode mapfile is re-

quired to translate inode numbers to locations on disk, DualFS improves metadataperformance

by storing recently modified dentries and inodes close together in the log.

Although the cylinder group concept has been refined over the years,the basic meta-

data structures and allocation strategies introduced by FFS still persist in typical local file sys-
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tems, such as ext3 [95]. As file system sizes have scaled more quickly than hard disk archi-

tectures, metadata structures have adapted. For example, file sizes have increased while disk

block sizes have remained small—usually 4 KB—for efficient storage of smallfiles. For large

files, this gives rise to extremely long block allocation lists enumerating the locationof file

data. Modern local file systems are exemplified by XFS [92], which replaces allocation lists

with extents—start and length pairs—to compactly describe large regions of disk.

Modern file systems have also introduced reliability features to streamline fastrecov-

ery after a failure. As with most commonly used alternatives, XFS maintains an on-diskjournal

file that it uses to log metadata updates that it is about to perform. In the eventof a failure,

the journal can be read to ensure that updates were successfully and correctly applied, or clean

up any partially applied updates. Although journals come with a performance penalty—disks

have to frequently reposition themselves to append to the journal, and each metadata update is

written to disk twice—they avoid the need for more costly consistency checks during failure

recovery (which are increasingly expensive as file systems scale).

Many systems also implement a form ofsoft updates, in which modifications are

written only to unallocated regions of disk and in careful order to ensure that the on-disk image

is always consistent (or easily repaired) [64]. The WAFL file system [40], for example, uses a

copy-on-write approach when update the hierarchical metadata structures, writing all new data

to unallocated regions of disk, such that changes are committed by simply updating a pointer to

the root tree node. WAFL also maintains a journal-like structure, but does so only to preserve

update durability between commits, not to maintain file system consistency. A similar technique

is used by EBOFS, the object-storage component of Ceph (see Chapter 7).
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2.2 Client-Server File Systems

The desire to share storage resources and data in networked computing environments

has given rise to a number of client-server file systems. The most commonly used are NFS [72]

and CIFS [38], which allow a central server to “export” a local file system to remote systems,

who then map it into their own namespace. Centralizing storage has facilitated thecreation

of specialized, high-performance storage systems and popularized so-called NAS—network

attached storage. However, the centralization inherent the client-serverarchitecture has proved

a significant impediment to scalability, because all file system operations much be processed

by a single server. In large installations, administrators typically assign subsets of their data

to specific servers, and map them into a single namespace by mounting multiple servers on

each client. While reasonably effective and widespread, this approachcan cause administrative

headaches when certain data sets grow or contract and require manuallymigration to other

servers.

Networked file systems typically relax consistency semantics in order to preserve

cache performance in a distributed environment. For example, NFS clients write file data back

to the server asynchronously, such that concurrent file access from other client hosts may not

always return the most recent copy of data. Similarly, clients typically cachefile metadata (e. g.

as seen bystat) for a fixed interval to limit client interact with and load on the file server. This

relaxation of file system consistency can cause problems for many applications, precluding their

use in NFS-based environments.
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2.3 Distributed File Systems

Distributed file systems attempt to address the fundamental load balancing and scaling

challenges inherent in client-server systems. Early distributed file systems include AFS [43],

Coda [85], and that found in Sprite [71]. These utilize a central serverto coordinate file system

access, and issueleasesto explicitly promise the validity of data (or metadata) provided to the

client cache for a specified period, while subsequentcallbackscan revoke the promise in the

event of a conflicting access. However, while Sprite simply disabled caching in the event of

(relatively rare) write sharing, AFS adopts an alternative consistency model constrained by file

open and close instead of individual read and write events. In contrast,NFS (prior to version

4, which adds limited lease-like support for file “delegations”) is stateless bydesign, sacrificing

consistency in the presence of data sharing.

Sprite partitions the file system among different servers by statically separating the

namespace into “domains,” and dynamically mapping each to server. AFS utilizes a hybrid

scheme that partitions files based on both their name and identifier among volumes, each of

which is then assigned to a server. In both systems, partition boundaries are visible to the user

through the lack of support forlink or atomicrename. In contrast to these systems, Ceph aims

to provide a unified file system namespace and fully consistent POSIX semantics.

Distributed architectures frequently replicate data across multiple servers for relia-

bility and availability in the presence of failure. In the Harp [61] file system, servers employ

primary-copy replication and write-ahead logs to allow fast recovery in theevent of a node

failure. A range of storage subsystems use similar techniques to provide reliable block-based
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access to storage. Petal [56] provides a sparse virtual disk abstraction that is managed by a

dynamic cluster of servers. FAB [82] employs a replica consistency protocol based on major-

ity voting. Ceph similarly provides a distributed and consistent storage service with (unlike

Petal) an object-based interface, a comparatively simple (relative to FAB) replica consistency

protocol, and greater scalability (see Chapter 6).

Much like local file systems leverage RAID for reliability, systems like Frangipani [94]

exploit a reliable distributed storage-layer abstraction like Petal to build a distributed file sys-

tem. Boxwood [63] similarly provides a file service based on reliable, replicated block devices,

although it does so by first constructing a rich distributed B-tree data structure. Ceph takes a

somewhat analogous approach with its use of the RADOS abstraction to provide reliable and

scalable storage, although it uses an object-based (rather than block-based) interface (see Sec-

tion 2.3.3).

2.3.1 Wide-area File Systems

Many systems consider distribution of file system components over a wide areaor

even (in some cases) in a global environment. The xFS [99] file system used an invalidation-

based cache-consistency protocol to facilitate aggressive client caching, in certain cases al-

lowing reads from peer’s caches [23, 22], to minimize costly communication over wide-area

networks, though with a significant cost in complexity. The OceanStore [52] file system aims

to build a globally available file storage service with erasure codes and a location-independent

routing abstraction. Pangaea [83] targets a similar wide-area environment,aggressively repli-

cating file contents where they are read, while relaxing replica consistencywhere strong guaran-
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tees are not explicitly required. All of these systems focus largely on minimizingcostly network

communication (in some cases at the expense of consistency) and scalability over a wide area;

high-performance access to in a clustered environment—where network communication is rel-

atively cheap—is not a design goal as it is in Ceph.

2.3.2 SAN File Systems

Recognizing that most file I/O in inherently parallel—that is, I/O to different files is

unrelated semantically—most recent “cluster” file systems are based on the basic idea of shared

access to underlying storage devices. So-called SAN—storage area network—file systems are

based on hard disks or RAID controllers communicating via a fibre channel(or similar) network,

allowing any connected host to issue commands to any connected disk.

Most SAN file systems utilize a distributed lock manager (DLM) [51] to coordinate

access to shared block storage. Additional steps are taken to limit the probability of lock con-

tention, exemplified by the partial distribution of block allocation in GPFS [86]. Other systems,

such as StorageTank [66], recognizing that contention for locks protecting file system metadata

can limit scalability, utilize an auxiliary cluster of servers for managing file systemmetadata—

the hierarchical namespace, access control, and block allocation.

2.3.3 Object and Brick-based Storage

Recently, many file systems and platforms, including Federated Array of Bricks (FAB) [82],

PVFS [55], and pNFS [39] have been designed around clusters of network attached storage

servers [31]. Like StorageTank, metadata is managed by an independent server (or servers),
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but file I/O takes place by interacting directly with a cluster of storage servers (often termed

“bricks”) instead of fibre channel disks. This allows certain functionality—such as low-level

block allocation decisions—to be distributed to the devices themselves.

Lustre [14], the Panasas file system [104], zFS [76], Sorrento [93], Ursa Minor [1],

and Kybos [107] are based on the closely-related object-based storage paradigm [7] popular-

ized by NASD [33]. Instead of performing I/O in terms of small, fixed-size blocks, data is

instead stored inobjectsthat have a name (typically taken from a flat 128-bit namespace),

a variable size (anywhere from bytes to gigabytes), and other per-object metadata, such as

named attributes describing access permissions. Object-based storage allows easily distributed

functionality like low-level block allocation or security capability enforcementto be performed

by semi-intelligent devices, reducing contention on servers managing metadata and improving

overall system scalability.

Although these object-based systems most closely resemble Ceph, none of them has

the combination of scalable and adaptable metadata management, reliability, and fault tolerance

that Ceph provides. Lustre and Panasas in particular delegate responsibility for low-level block

allocation to OSDs, reducing the amount of file metadata, but otherwise do little to exploit

device intelligence. With the exception of Sorrento, all of these systems use explicit allocation

maps to specify where objects are stored, an approach that forces the involvement of the object

directory server(s) in any migration of data between storage devices, limitingefficiency. Like

Ceph, Sorrento uses a function to describe data placement on storage nodes instead of relying on

traditional allocation tables. However, Sorrento’s hashed distribution [47] lacks Ceph’s support

for efficient data migration, device weighting, and separation of replicas across failure domains
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(see Chapter 5). Most importantly, Ceph’s functional specification of data layout allows OSDs

to manage migration and failure recovery in a distributed fashion (see Chapter 6).

Kybos leverages device intelligence to manage quality-of-service reservations (some-

thing that Ceph does not do), and stores data using a network RAID protocol with two-phase

updates (Ceph uses a simpler replication protocol). Ursa Minor provides adistributed object

storage service that supports a range of redundancy strategies—including replication and parity-

based encoding (RAID)—and consistency models, depending on application requirements. All

of these systems, however, have limited support for efficient distributed metadata management,

limiting their scalability and performance (see Chapter 4).

2.3.4 Non-POSIX Systems

A number of distributed file systems adopt alternative (non-POSIX) file system in-

terfaces. Farsite [2, 25] federates a large number of unreliable workstations into a distributed

file system providing Windows file service with Byzantine fault-tolerance. Notably, this does

not include support for files linked to multiple names in the hierarchy (so-called “hard links”).

However, like Ceph, Farsite dynamically distributes management of the file system namespace

among available servers; dynamic subtree partitioning is discussed in greater detail in Chapter 4.

The Sorrento [93] file system is POSIX-like, but—much like AFS—adopts a relaxed

consistency model that simplifies metadata management and update consistencyin the presence

of write sharing. Other systems simplify consistency more drastically: Cedar [32] translates

the consistency problem into one of versioning by making shared files immutable, while in

Venti [75], all data is considered immutable.
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Although architecturally the Google File System [30] resembles object-basedsys-

tems, it eschews standard file system interfaces entirely, and is optimized forvery large files

and a workload consisting largely of reads and file appends.
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Chapter 3

Ceph Architecture

This chapter introduces the basic architectural features of Ceph. The overall operation

of the system is presented by describing the Ceph client, and its interaction withvarious system

components while performing basic file operations.

3.1 Ceph

The Ceph file system has three main components: the client, each instance of which

exposes a near-POSIX file system interface to a host or process; a cluster of OSDs, which

collectively stores all data and metadata; and a metadata server cluster, which manages the

namespace (file names and directories) while coordinating security, consistency and coherence

(see Figure 3.1). I say the Ceph interface is near-POSIX because I findit appropriate to extend

the interface and selectively relax consistency semantics in order to better align both with the

needs of applications and improve system performance (discussed in Section 3.2.2).

The primary goals of the architecture are scalability (to hundreds of petabytes and
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Figure 3.1: System architecture. Clients perform file I/O by communicating directly with
OSDs. Each process can either link directly to a client instance, or interactwith a mounted file
system.

beyond), performance, and reliability. Scalability is considered in a varietyof dimensions, in-

cluding the overall storage capacity and throughput of the system, and performance in terms

of individual clients, directories, or files. Our target workload may include such extreme cases

as tens or hundreds of thousands of hosts concurrently reading fromor writing to the same

file or creating files in the same directory. Such scenarios, common in scientificapplications

running on supercomputing clusters, are increasingly indicative of tomorrow’s general purpose

workloads. More importantly, distributed file system workloads are inherently dynamic, with

significant variation in data and metadata access as active applications and data sets change over

time. Ceph directly addresses the issue of scalability while simultaneously achieving high per-

formance, reliability and availability through three fundamental design features: decoupled data

and metadata, dynamic distributed metadata management, and reliable autonomic distributed

object storage.

• Decoupled Data and Metadata—Ceph maximizes the separation of file system meta-

data management from the storage of file data. Metadata operations (open, rename,

etc.) are collectively managed by a metadata server cluster, while clients interact di-
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rectly with OSDs to perform file I/O (reads and writes). Object-based storage has long

promised to improve the scalability of file systems by delegating low-level block allo-

cation decisions to individual devices. However, in contrast to existing object-based file

systems [14, 104, 31, 30] which replace long per-file block lists with shorter object lists,

Ceph eliminates allocation lists entirely. Instead, a simple function is used to name the

objects containing file data based on inode number, byte range, and stripingstrategy,

while a special-purpose data distribution function assigns objects to specificstorage de-

vices. This allows any party to calculate (rather than look up) the name and location of

objects comprising a file’s contents, eliminating the need to maintain and distribute object

lists, simplifying the design of the system, and reducing the metadata cluster workload.

• Dynamic Distributed Metadata Management—Because file system metadata opera-

tions make up as much as half of typical file system workloads [77], effective meta-

data management is critical to overall system performance. Ceph utilizes a novel meta-

data cluster architecture based on dynamic subtree partitioning [102] that adaptively and

intelligently distributes responsibility for managing the file system directory hierarchy

among tens or even hundreds of MDSs. A (dynamic) hierarchical partitionpreserves lo-

cality in each MDS’s workload, facilitating efficient updates and aggressive prefetching

to improve performance for common workloads. Significantly, the workload distribution

among metadata servers is based entirely on current access patterns, allowing Ceph to

effectively utilize available MDS resources under any workload and achieve near-linear

metadata performance scaling in the number of MDSs.
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• Reliable Autonomic Distributed Object Storage—Large systems composed of many

thousands of devices are inherently dynamic: they are built incrementally; they grow and

contract as new storage is deployed and old devices are decommissioned;device failures

are frequent and expected; and large volumes of data are created, moved, and deleted. All

of these factors require that the distribution of data evolve to effectively utilize available

resources and maintain the desired level of data replication. Ceph delegatesresponsibility

for data migration, replication, failure detection, and failure recovery to thecluster of

OSDs that is storing the data, while at a high level, OSDs collectively provide asingle

distributed and reliable object store to clients and metadata servers. This approach allows

Ceph to more effectively leverage the intelligence (CPU and memory) present on each

OSD to achieve reliable, highly available object storage with linear scaling.

3.2 Client Operation

I introduce the overall operation and interaction of Ceph’s components and its inter-

action with applications by describing Ceph’s client operation. The Ceph client runs on each

host executing application code and exposes a file system interface to applications. In the Ceph

prototype, the client code runs entirely in user space and can be accessed either by linking to it

directly or as a mounted file system via FUSE (a user-space file system interface). Each client

maintains its own file data cache, independent of the kernel page or buffer caches, making it

accessible to applications that link to the client directly.
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3.2.1 File I/O and Capabilities

When a process opens a file, the client sends a request to a node in the MDS cluster

(see Section 4.3.1). An MDS traverses the file system hierarchy to translatethe file name into

the file inode, which includes a unique inode number, the file owner, mode, size, and other

per-file metadata. If the file exists and access is granted, the MDS returns the inode number,

file size, and information about the striping strategy used to map file data into objects. The

MDS may also issue the client acapability (if it does not already have one) specifying which

read or write operations are permitted. Capabilities currently include four bitscontrolling the

client’s ability to read, cache reads, write, and buffer writes. In the future, capabilities will

include security keys allowing clients to prove to OSDs that they are authorized to read or write

data [58, 69] (the prototype currently trusts all clients). involvement in file I/O is limited to

managing capabilities to preserve file consistency and achieve proper semantics.

Ceph generalizes a range of striping strategies to map file data onto a sequence of

objects. Successivestripe unit byte blocks are assigned to the firststripe countobjects, un-

til objects reach a maximumobject sizeand we move to the next set ofstripe countobjects.

Whatever the layout (by default Ceph simply breaks files into 8 MB chunks), an additional field

specifies how many replicas are stored of each object.

To avoid any need for file allocation metadata, object names are constructedby con-

catenating the file inode number and the object number. Object replicas are then assigned to

OSDs using CRUSH, a globally known mapping function (described in detail inChapter 5).

For example, if one or more clients open a file for read-only access, an MDS grants them the
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capability to read and cache file content. Armed with the inode number, layout, and file size,

the clients can name and locate all objects containing file data and read directly from the OSD

cluster. Any objects or byte ranges that don’t exist are defined to be file“holes”, or zeros. Sim-

ilarly, if a client opens a file for writing, it is granted the capability to write with buffering, and

any data it generates at any offset in the file is simply written to the appropriateobject on the

appropriate OSD. The client relinquishes the capability on file close and provides the MDS with

the new file size (the largest offset written), which redefines the set of objects that (may) exist

and contain file data.

3.2.2 Client Synchronization

POSIX semantics sensibly require that reads reflect any data previouslywritten, and

that writes are atomic (i. e. the result of overlapping, concurrent writes will reflect a particular

order of occurrence). When a file is opened by multiple clients with either multiplewriters or a

mix of readers and writers, the MDS will revoke any previously issued read caching and write

buffering capabilities, forcing all client I/O to be synchronous. That is,each application read or

write operation will block until it is acknowledged by the OSD, effectively placing the burden

of update serialization and synchronization with the OSD storing each object.Achieving atom-

icity is more complicated when writes span object boundaries. The prototype currently uses a

simple locking mechanism to achieve correct serialization, although an alternative method that

implements something closer to a true transaction is under consideration.

Not surprisingly, synchronous I/O can be a performance killer for applications, par-

ticularly those doing small reads or writes, due to the latency penalty—at leastone round-trip
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to the OSD. Although read-write sharing is relatively rare in general-purpose workloads [77], it

is more common in scientific computing applications [98], where performance is often critical.

For this reason, it is often desirable to relax consistency at the expense of strict standards con-

formance in situations where applications do not rely on it. Although Ceph supports such relax-

ation via a global switch, and many other distributed file systems punt on this issue [55, 72, 93],

this is an imprecise and unsatisfying solution: either performance suffers,or consistency is lost

system-wide.

For precisely this reason, a set of high performance computing extensions to the

POSIX I/O interface have been proposed by the high-performance computing (HPC) commu-

nity [103], a subset of which are implemented by Ceph. Most notably, theseinclude anO LAZY

flag for openthat allows applications to explicitly relax the usual coherency requirements for

a shared-write file. Performance-conscious applications who manage their own consistency

(e. g. by writing to different parts of the same file, a common pattern in HPC workloads[98])

are then allowed to buffer writes or cache reads when I/O would otherwisebe performed syn-

chronously. If desired, applications can then explicitly synchronize with two additional calls:

lazyio propagatewill flush a given byte range to the object store, whilelazyio synchronizewill

ensure that the effects of previous propagations are reflected in any subsequent reads. The latter

is implemented efficiently by provisionally invalidating cached data, such that subsequent read

requests will be sent to the OSD but only return data if it is newer. The Cephsynchronization

model thus retains its simplicity by providing correct read-write and shared-write semantics be-

tween clients via synchronous I/O, and extending the application interface torelax consistency

for performance conscious distributed applications.
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3.2.3 Namespace Operations

Client interaction with the file system namespace is managed by the metadata server

cluster. Both read operations (e. g. readdir, stat) and updates (e. g. unlink, chmod) are syn-

chronously applied by an MDS to ensure serialization, consistency, correct security, and safety.

For simplicity, no metadata locks or leases are issued to clients. For HPC workloads in particu-

lar, callbacks offer minimal upside at a high potential cost in complexity.

Instead, Ceph optimizes for the most common metadata access scenarios. Areaddir

followed by astat of each file (e. g. ls -l) is an extremely common access pattern and no-

torious performance killer in large directories. Areaddir in Ceph requires only a single MDS

request, which fetches the entire directory, including inode contents. By default, if a read-

dir is immediately followed by one or morestats, the briefly cached information is returned;

otherwise it is discarded. Although this relaxes coherence slightly in that anintervening inode

modification may go unnoticed, Ceph can optionally make this trade for vastly improved perfor-

mance. This behavior is explicitly captured by thereaddirplus[103] extension, which returns

lstat results with directory entries (as some OS-specific implementations ofgetdiralready do).

Ceph can allow consistency to be further relaxed by caching metadata longer, much

like earlier versions of NFS, which typically cache for 30 seconds. However, this approach

breaks coherency in a way that is often critical to applications, such as those usingstat to

determine if a file has been updated—they either behave incorrectly, or endup waiting for old

cached values to time out.

Ceph opts instead to again provide correct behavior and extend the interface in in-
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stances where it adversely affects performance. This choice is most clearly illustrated by astat

operation on a file currently opened by multiple clients for writing. In order to return a correct

file size and modification time, the MDS revokes any write capabilities to momentarily stop

updates and collect up-to-date size and mtime values from all writers. The highest values are

returned with thestat reply, and capabilities are reissued to allow further progress. Although

stopping multiple writers may seem drastic, it is necessary to ensure proper serializability. (For

a single writer, a correct value can be retrieved from the writing client without interrupting

progress.) Applications who find coherent behavior unnecessary—victims of a POSIX inter-

face that doesn’t align with their needs—can opt to use the newstatliteoperation [103], which

takes a bit mask specifying which inode fields are not required to be coherent.

3.3 Communication Model

Ceph adopts an asynchronous messaging model for inter-node communication. In

contrast to systems based on RPC, outgoing messages are queued for later delivery without

blocking, and exchanges need not (and generally do not) consist of request and response pairs.

This allows for greater flexibility and efficiency in data and information flow byfacilitating

asymmetric exchanges.

The communications model assumes ordered fail-stop delivery of messagesbetween

any given pair of nodes. That is, all sent messages will be delivered intheir entirety in the order

they were sent. The implementation currently utilizes TCP, although the interfaceis constructed

to easily support alternative transports such as RDS [70]. In the eventof a communications
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failure (e. g. a transport error, such as a break in an underlying TCP connection),the sender is

asynchronously notified of the error.
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Chapter 4

Distributed Metadata Management

As demand for storage has increased, the centralization inherent in client-server stor-

age architectures has proven a significant obstacle to scalable performance. Recent distributed

file systems have adopted architectures based on object-based or brick-based storage, distribut-

ing low-level block allocation decisions to the storage devices and simplifying file system meta-

data. This lends itself well to architectures in which clients interact with a separate metadata

server (MDS) to perform metadata operations (e. g. open, rename) while communicating di-

rectly with storage devices (OSDs) for file I/O.

In systems that decouple data and metadata access, efficient metadata performance

becomes critical to overall system performance. Prior workload study has shown that metadata

operations account for as much as 30-70% of all file systems operations [77]. While conven-

tional write buffering and data prefetching techniques reduce interactionwith storage devices

for data I/O, metadata operations are frequently synchronous. Further, because data is managed

independently from metadata, the metadata server workload consists almost entirely of small
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reads and writes to relatively small data structures, making it important for the MDS to optimize

its own I/O with underlying storage devices.

As distributed file systems scale to petabytes of data and beyond, the distribution

of workload becomes difficult. System capacity and workloads usually grow incrementally

over time, and can vary independently, making static partitions of the file systemto individual

servers inefficient: individual nodes may become overloaded while others sit idle. Typical

server workloads vary on a daily basis, as demand shifts throughout theday [27], and in many

systems—compute clusters in particular—workloads may vary wildly as different jobs start and

finish [98]. Such variance in file system workloads demandsadaptiveapproaches to metadata

management in order to effectively utilize resources at scale [25, 79, 100, 102].

The combined demand for metadata performance and dynamic load balancing poses

a significant challenge to system reliability. Storage systems, by their nature,demand strong

data safety, while distributed systems introduce more system components that mayfail. Most

conventional file systems employ some form ofjournal, which provides a sequential log of op-

erations that allows fast recovery after a failure. In a dedicated MDS, however, the large number

of small updates leads to a pathological I/O profile when combined with conventional metadata

storage and journaling approaches. Alternative techniques based onsoft updatesrequire careful

ordering of updates [64], limiting parallelism and placing an even greater burden on the storage

subsystem.

I present a metadata management approach addressing the unique performance re-

quirements of a clustered metadata server that is capable of tolerating arbitrary node crashes1.

1The MDS cluster is tolerant of any number or combination of MDS node crashes, provided there is sufficient
opportunity for new MDS processes to recover in their place. The clusterdoes not tolerate Byzantine failures,
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In contrast to previous work in this area, my architecture and implementation maintain meta-

data performance before, during, and after failure by simultaneously addressing the efficiency

of metadata I/O, cluster adaptability, and failure recovery.

Ceph’s metadata storage differs from that in conventional file systems in twokey

ways. First, the relatively small per-fileinodemetadata structures in our environment (due in

part to our use of an object-based storage layer that minimizes allocation metadata) make it

practical to embed them in directories with the directory entries (dentries) that refer to them,

while support for multiple pathnames referencing a single file (hard links) is preserved through

an auxiliary table. Based on prior study and my own analysis of file system snapshots and

workloads, Ceph stores each directory’s contents (dentries and embedded inodes) together in

the shared object storage pool. This facilitates inode prefetching by exploiting the high degree

of directory locality present in most workloads—with negligible additional I/O cost—and fa-

cilitates an efficient subtree-based load partitioning strategy by embedding all metadata in the

hierarchical namespace.

Second, Ceph utilizes per-metadata server update journals that are allowed to grow

very large, to hundreds of megabytes or more. This allows it to distill the effects of multiple

updates and short-lived files into a much smaller set of updates to the primary metadata struc-

tures, minimizing inefficient random-access I/O, while facilitating streamlined recovery and

subsequent MDS performance after a node failure.

Finally, I adopt a subtree-based partitioning strategy [25, 102] to dynamically dis-

tribute workload. A hierarchical approach preserves locality within eachMDS workload, while

wherein processes behave incorrectly or maliciously.
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selective metadata replication preserves cluster throughput and availabilitywhen a subset of

nodes fail. Ceph’s approach redefines the directory hierarchy in termsof directoryfragments,

facilitating fine-grained load distribution and simple, efficient storage.

In this chapter I focus on thefailure recovery, metadata I/O efficiency, andadapt-

ability implications of the combined approach to metadata storage, journaling, and workload

distribution and relate my experiences constructing a working implementation. I analyze a

variety of static file system snapshots and workload traces to motivate MDS design and per-

formance analysis, present a simulation based-analysis of metadata partitioning approaches to

demonstrate the architectural advantages of a dynamic subtree-based approach, and evaluate

my implementation under a range of micro-benchmarks, workload traces, andfailure scenarios.

4.1 Background and Related Work

Metadata in file systems presenting a POSIX file system interface is normally repre-

sented by three basic structures: inodes, dentries, and directories. Per-file or directory metadata

(e. g.modification time, size, data location) is stored ininodes. Eachdirectoryhas some number

of file names or directory entries (dentries), each referencing an inode by number.

4.1.1 Local File Systems

In the original Unix file system, as well as BSD’s FFS [65]—whose basic design

most later file systems have largely preserved—inodes were stored in tablesin reserved regions

on disk, their precise location indicated by their inode number. In contrast, C-FFS [29] embeds
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most inodes inside directories with the dentries that refer to them, as well as taking steps to keep

each directory’s file data together on disk. Despite significant performance benefits (10-300%),

few file systems since have adopted similar embedding techniques. This may be due to C-FFS’s

need to maintain a map of all directories to supportmultilink files(usually termedhard links)—

inodes which are referenced by multiple filenames. In contrast, our metadataserver architecture

embedsall inodes and maintains a much smaller table that indexes only those directories with

nested multilink files (we consider table utilization in detail in Section 4.5.2.3).

The Log-Structured File System (LFS) [26, 78] stores all data and metadata in a se-

quential log for improved write performance. However, the “cleaner” used to reclaim space—

by rewriting partially deallocated log segments to new regions of disk—can incur a significant

overhead for many workloads [87, 88]. DualFS [73] separates data and metadata management—

much like object-based cluster file systems—by writing metadata to a separate device using an

LFS-style log, mitigating cleaner effects by eliminating bulky file data. Although—as with

LFS—a special inode map file is required to translate inode numbers to locationson disk, Du-

alFS improves metadata locality by storing recently modified dentries and inodes close together

in the log. hFS [113] combines elements of FFS and LFS by storing metadata andsmall file

data in an LFS-like log and large file data in FFS-style allocation groups, allowing the effects of

many operations to be combined into an atomic segment write (as in LFS) while also avoiding

the need for a cleaner entirely.

Most modern file systems [92, 95] employjournaling to maintain file system con-

sistency after a crash. Metadata (and, in certain cases, data) updates are first written to a log-

structured journal before being applied to the regular on-disk metadata structures. Although
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journals come with a performance penalty—disks have to frequently reposition themselves to

append to the journal, and each metadata update is written to disk twice—they avoid the need

for more costly consistency checks during failure recovery (which areincreasingly expensive as

file systems scale). Many systems also implement a form ofsoft updates, in which modifications

are written only to unallocated regions of disk and in careful order to ensure that the on-disk

image is always consistent (or easily repaired) [40, 64]. Ceph’s MDS combines elements of

LFS and journaling, adapted to a distributed environment.

4.1.2 Distributed File Systems

Distributed file systems must partition management of the overall file system names-

pace across multiple servers in order to scale. I discuss prior approaches in terms of the parti-

tioning strategy to introduce the efficiency issues involved.

4.1.2.1 Static Subtree Partitioning

The most common approach is to statically partition the directory hierarchy and assign

each subtree to a particular server, in some cases migrating subtrees whenit becomes necessary

to correct load imbalance—this approach is taken by Sprite [71], StorageTank [66], PanFS [68],

and others. However, because partition boundaries are typically visible through the lack oflink

and atomicrenamesupport, these systems resemblead hoccollections of NFS or CIFS [38]

servers. Static partitions fail to account for the growth or contraction of individual subtrees over

time, often requiring intervention of system administrators to repartition or (in some cases)

manually rebalance data across servers. Although StorageTank and PanFS volumes or file sets
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are smaller than the physical server capacity and can be migrated between servers, the unit of

load distribution remains coarse and fixed.

4.1.2.2 Hash-based Partitioning

To limit workload imbalance associated with static subtree partitioning, Lustre’s clus-

tered MDS distributes directories randomly among “inode groups,” each ofwhich is assigned

to a server [14]. This provides a finer distribution of data and workload by decorrelating the

partition from the hierarchy. A number of other distributed file systems use a similarly random

distribution: Vesta [20], Intermezzo [13], RAMA [67], and zFS [76] allhash the file pathname

and/or some other unique identifier to determine the location of metadata and/or data. As long

as such a mapping is well defined, this simple strategy has a number of advantages. Clients can

locate and contact the responsible MDS directly and, for average workloads and well-behaved

hash functions, requests are evenly distributed across the cluster. Further, hot-spots of activity

in the hierarchical directory structure, such as heavy create activity in asingle directory, do not

correlate to individual metadata servers because metadata location has no relation to the direc-

tory hierarchy. However, hot-spots consisting of individual files can still overwhelm a single

responsible MDS.

More significantly, distributing metadata by hashing eliminates all hierarchical lo-

cality, and with it many of the locality benefits typical of local file systems. Some systems

distribute metadata based on a hash of thedirectory portion of a path only to allow directory

contents to be grouped on MDS nodes and on disk. This approach facilitates prefetching and

other methods of exploiting locality within the metadata workload. Even so, to satisfy POSIX
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directory access semantics, the MDS cluster must traverse prefix (ancestor) directories contain-

ing a requested piece of metadata to ensure that the directory permissions allow the current user

access to the metadata and data in question. Because the files and directorieslocated on each

MDS are scattered throughout the directory hierarchy, a hashed metadata distribution results in

high overhead, either from a traversal of metadata scattered on multiple servers, or from the

cache of prefixes replicated locally. Prefix caches between nodes will exhibit a high degree of

overlap because parent directory inodes must be replicated for each MDS serving one or more

of their children, consuming memory resources that could cache other data.

Approaches like ANU (adaptive nonuniform randomization) [108] seek todistribute

fixed file sets (e. g. Lustre’s inode groups) among servers using a hash-like function that is

dynamically adjusted based on measured server load. As with static subtree partitions, ANU

relies on an existing fixed partition of metadata into file sets; in contrast, Ceph’sMDS balances

load using a flexible dynamic partition and heuristics similar to those in ANU to prevent load

thrashing.

4.1.2.3 Lazy Hybrid

Lazy Hybrid (LH) metadata management [15] seeks to capitalize on the benefits of a

hashed distribution while avoiding the problems associated with path traversalby merging the

net effect of the permission check into each file metadata record. Like other hashing approaches,

LH uses a hash of the file’s full path name to distribute metadata. To alleviate the potentially

high cost of traversing paths scattered across the cluster, LH uses a dual-entry access control

list that stores the effective access information for the entire path traversal with the metadata
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for each file. It has been shown that this information can usually be represented very compactly

even for large general-purpose file systems [74]. LH need only traverse the path when access

controls need to be updated because an ancestor directory’s access permissions are changed,

affecting the effective permissions of all files nested beneath it. Similarly, renaming or moving

a directory affects the path name hash output and hence metadata location ofall files nested

beneath it, requiring metadata to be migrated between MDSs. Previous trace analysis has shown

that changes like this happen very infrequently [77] and it is likely that theywill affect small

numbers of files when they do occur. Moreover, it is possible to performthis update at a later

time to avoid a sudden burst of network activity between metadata servers, by having each MDS

maintain a log of recent updates that have not fully propagated and then lazily update nested

items as they are requested.

LH avoids path traversal in most cases, provided certain metadata operations are suffi-

ciently infrequent in the workload. Analysis has shown that update cost can be amortized to one

network trip per affected file; as long as updates are eventually applied more quickly than they

are created (changes to directories containing lots of items could trigger potentially millions of

updates with a single update), LH delivers a net savings and good scalability. Like other file

hashing approaches, it avoids overloading a single MDS in the presenceof directory hot-spots

by scattering directories. However, in doing so the locality benefits are lostwhile the system

remains vulnerable to individually popular files. More importantly, the low update overhead es-

sential to LH performance is predicated on the low prevalence of specific metadata operations,

which may not hold for all workloads.
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4.1.2.4 Dynamic Subtree Partitioning

A few research file systems have recently adopteddynamicsubtree-based metadata

partitions, in which subtrees of the hierarchy are redistributed across a cluster of servers in re-

sponse to the current workload. The directory service in Farsite [25] dynamically redistributes

subtrees described by a hierarchical file identifier, but unlike Ceph, implements Windows (non-

POSIX) semantics, with no support for hard links. More significantly, Farsite also relies on a

hierarchical file identifier in order to minimize growth of its description of the current metadata

distribution; in contrast, Ceph requires no global state to specify the namespace partition, im-

proving scalability. Envoy [79] allows client hosts to claim management of subtrees based on

their current workload through a distributed locking strategy. Neither, however, evaluates the

comparative benefits of a subtree-based approach quantitatively, nordo either present or evalu-

ate an implementation with working failure recovery. The Farsite MDS utilizes an independent

atomic-action state machine substrate, which the authors suggest could be integrated with Far-

site’s existing Byzantine-fault tolerant substrate; the performance implications of doing so are

not discussed. A recovery procedure for Envoy is described, butnot evaluated nor considered

in the context of system performance.

4.1.2.5 Metadata Storage

Distributed approaches to metadata management commonly utilize a shared storage

subsystem, facilitating load balancing and failure recovery. However, existing approaches take

minimal steps to optimize the I/O generated by the metadata server. Because Lustre metadata in

each inode group is stored in a modified ext3 file system, the large volume of updates imposes a
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significant random I/O load due to the use of conventional journaling and inode storage. PanFS

and Envoy, two other object-based file systems, both store each file’s metadata as attributes on

the file data objects, subjecting the distributed object store to a similar workload.

I describe a combined metadata management strategy involving embedded inodes,

large MDS journals, and dynamic subtree partitioning specifically in the context of metadata

I/O efficiency, metadata partition efficiency and adaptability, and sustained performance in the

presence of arbitrary node failure. Ceph’s evaluation is based on the study of general purpose

file system usage—content snapshots and workload traces—and evaluation of both normal op-

eration and failure recovery of a working implementation.

4.2 Metadata Storage

Metadata, like data, is stored by a cluster of object storage devices (OSDs) that form a

replicated, reliable object storage pool, described in Chapter 6. A varietyof other reliable, dis-

tributed storage layers have been discussed in the literature [1, 30, 82, 100, 107]; in this chapter

I ignore the details of object storage, assuming only that performance is based on the behavior

of modern hard disks—characterized by expensive seeks and high sequential throughput—and

focus instead on minimizing the I/O workload generated by the MDS by favoringsequential

over small, random I/Os.

The full metadata contents of each directory (file names and inodes) are stored in a

single object whose name corresponds to the directory’s inode number, as shown in Figure 4.1.

Each MDS also maintains a journal that contains recently created or modified metadata not yet
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Figure 4.1: All metadata for each directory, including file names (dentries) and the inodes they
reference, are stored in a single object (identified by the directory’s inode number) in the shared,
distributed object store. Inode 1 is the root directory.

committed to the directory storage objects. MDS journals are striped over many fixed-size (but

large) objects with sequential identifiers. Journals grow by spilling onto newobjects, and are

trimmed by deleting older objects.

Normally, the MDS submits a separate I/O operation for each journal entry in order

to minimize the latency associated with any individual update operation. Under heavy loads,

however, journal throughput can still be limited by the storage layer due to the large number of

small (though sequential) write operations. To avoid this, the MDS will write journal data to the

object store in larger increments only when it is necessary to keep the overall I/O rate below a

fixed (tunable) maximum, improving overall throughput (and, correspondingly, average latency)

under heavy load.
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4.2.1 Embedded Inodes

File path resolution is performed by loading the directory inode and then dentry for

each path component to determine the file’s inode number. Although most file systems try to

keep inodes near the directory entries that reference them, multiple read operations are typically

required. This can be problematic for many common usage patterns, such asa readdir followed

by astaton every file (as withls -l or find), as eachstatneeds data at a different location

on disk. Moreover,statoperations typically occur in the order dentries appear in the directory,

which rarely corresponds to the order inodes occur on disk.

The key reason that inodes and dentries exist as independent structures is that POSIX

file systems allow multiple dentries (and thus, multiple file names) to refer to a single inode

(file). In practice, however, multiple “hard links” to individual files are relatively rare, and are

used primarily for temporary files. That is, inodes rarely have more than one link for very long

(see Section 4.5.2.3).

The efficiency problems associated by scattered inodes are avoided by storing dentries

and inodes together. I call one (usually the only) dentry referring to each inode theprimary

dentry, and store the inode adjacent to it, inside the directory object. When a directory is

loaded off disk to perform a single lookup or areaddir, the dentries and inodes for the entire

directory are fetched into the MDS cache in a single read operation. Giventhat analysis of file

system workloads has shown a high degree of directory locality [77, 89], our streamlined inode

prefetching results in an improved I/O profile with minimal cost; the increased directory size

does not significantly effect overall access time (see Section 4.5.2.2), and prefetched metadata
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are placed low in the cache LRU list to avoid displacing other metadata in the working set.

4.2.2 Remote Links and the Anchor Table

Any additional dentries that reference an inode are calledremote dentries, and are

stored with the inode number for the inode they refer to, as with dentries in conventional file

systems. However, such links may exist anywhere in the file system hierarchy relative to the

primary dentry, whose location may also change. I introduce an auxiliaryanchor tablewhich

logically takes the place of a conventional inode table by allowing inodes to be located by their

inode number. However, we populate the table by onlyanchoringthose inodes with more than

one link (i. e. only those inodes we may need to locate by number).

To anchor an inode, all ancestor inodes must either already exist or be added to the an-

chor table, which consists of small, fixed size records (anchors) of the form〈ino, parent,nre f〉—

backpointers that eventually link each anchored inode back to the root.Ino identifies the inode

in question,parent identifies its immediate parent directory by inode number and fragment id

(see Section 4.3.6), andnref is a reference count that includes the inode anchor and any parent

pointers from other anchor table records. Thus, given the inode number of an anchored inode

we can retrieve the path by successively looking up parents until a knowninode (i. e. one that

an MDS already has in its in-memory cache) or the root directory is reached.

A key property of an anchor table consisting of directory backpointers isthat a direc-

tory rename that may effect the path for an unbounded number of anchored inodes (e. g. near

the root of the hierarchy) requires only a single anchor table update transaction. That transac-

tion will include the backpointer change for the renamed directory, a reference count decrement
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on the old parent, and count increment on the new parent. It may also include the subsequent

removal of ancestors whose counts have reached zero, or the insertion of the new parent and its

ancestors if they were not already present in the table.

4.2.3 Large Journals

In most file systems, the journal acts as a temporary staging area to facilitate safe

updates of often complicated metadata structures without fear of corruption. Journal contents

are typically discarded as soon as those updates complete. In contrast, log-based file systems

such as LFS [26, 78] and hFS [113] use the log as the primary storage structure, citing its supe-

rior write performance. To manage deletion and deallocation, log-based systems—with notable

exception of hFS—typically introduce a “cleaner” process to rewrite partially deallocated seg-

ments so that disk space can be reused.

Ceph’s metadata manager takes a hybrid approach. Updates are first written to an

MDS journal, and the affected metadata is marked “dirty” and pinned in the MDScache. Al-

though we eventually commit the change to the primary per-directory metadata objects, we

delay this until the relevant entry must be trimmed from the tail of the journal, andallow the

journal to become very large (hundreds of megabytes or more). Most significantly, each jour-

nal’s contents are reflected by the MDS’s in-core state; changes are later committed to the

primary metadata structures without requiring the journal to be re-read (aswith LFS’s cleaner).

MDS journals can be viewed as a means of recovering the contents of eachnode’s in-memory

metadata cache—and indirectly the file system state—thereby allowing the MDS to adapt con-

ventional techniques like delayed writeback and group commit to a clustered setting for im-
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proved performance without compromising safety.

Large journals reduce the number of directory updates in two key ways. First, in

most workloads, individual metadata objects are updated multiple times before becoming idle.

Similarly, most new files are temporary and are removed shortly after creation[27, 77]. As the

journal is trimmed and changes are committed to the directory objects, all but the most recent

update for any given object can be ignored; for deleted files, all journal entries are moot. Second,

all updates to a given directory over the lifetime of the journal are effectively committed—and

the corresponding in-memory copies marked “clean”—in a single update transaction.

This strategy allows the MDS to optimize its I/O profile by streaming most updates

to disk in an efficient, sequential manner while also limiting the number of random updates to

per-directory metadata objects. At the same time, unlike logging file systems like LFS and hFS,

we also optimize future read access by grouping dentry and inode metadata by directory.

Aside from enabling failure recovery, large journals allow a recoveringMDS to prime

its cache with a large quantity of warm metadata. This avoids an inefficient start from a cold

cache and the large number of read I/Os that would be required to equivalently re-populate it,

preserving MDS performance after recovery.

4.3 Adaptive Workload Distribution

As file systems scale it becomes necessary to distribute workload over multiple ma-

chines in order to achieve acceptable performance. Most clustered file systems use a static

subtree partition, in which fixed portions of the file system hierarchy are assigned to different

42



servers. The problem with static partitions is that neither file system contents nor workloads are

static: both the storage needs for and client access to different parts ofthe hierarchy will grow

or contract over time, often requiring the intervention of system administrators to repartition or

re-balance file systems across devices or servers. Further, transient variations in workload can

lead to wide variations in server load, preventing the effective utilization of available hardware

resources.

Ceph capitalizes on the benefits of adynamicsubtree-based partition to achieve scal-

able performance. Subtrees of the hierarchy are adaptively migrated between nodes to correct

load imbalance, while favoring a coarse partition in order to preserve localitywithin the work-

load managed by each MDS. This typically allows client nodes to interact with only a small

set of servers, while also limiting the amount of ancestor metadata that must be replicated to

support consistent path resolution and access control.

Farsite and Envoy also utilize a subtree-based partition and dynamic load distribu-

tion [25, 79], although neither provides a comparative evaluation of dynamic partitioning versus

other approaches. More importantly, none of the prior research in this area focuses on the impli-

cations of MDS node failure on metadata partitioning (or vice-versa). In thissection, I focus on

the construction of a distributed metadata cache that preserves implementation simplicity while

facilitating scalabilityandtolerating arbitrary MDS node crashes.

4.3.1 Subtree Partitioning as Soft State

Ceph’s architecture allows an arbitrary and adaptive subtree-based partition of the

file system across a dynamic cluster of metadata servers, while providing a single semantic
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namespace (i. e. full support for atomic rename and hard links, even when spanning subtrees

currently managed by different MDS nodes). At the same time, Ceph allows extremely fine-

grained load distribution when necessary. Instead of defining subtreesin terms of directories

(which makes directories the indivisible unit of load distribution), Ceph allowslarge or busy

directories to fragment, and defines the partition in terms of individual directory fragments (see

Section 4.3.6). Each subtree is defined by the directory fragment at its root, and zero or more

bounds, where each bound is the root directory fragment for a nested subtree. At any given

subtree boundary, the directory inode belongs to the parent subtree (itis stored in the containing

directory), while the directory fragment—and the metadata it contains—belongs to the child

subtree.

A distinguished MDS (mds0) is always responsible for the root inode. Beyond that,

metadata is partitioned in terms of metadata that currently exists in the cluster’s collective in-

memory cache. Because the cached subset is a connected subtree of theoverall hierarchy, this

simultaneously partitions the total file system. Any given piece of metadata (directory fragment,

dentry, or inode) occupies a specific position within the file system hierarchy, by virtue of

Ceph’s embedded inodes (see Section 4.2.1). This allows a subtree partitionto simultaneously

partition both namespace (directory fragment and dentry) and file (inode)metadata. Every

metadata item present in an MDS’s in-memory cache is eitherauthoritative—if it falls within a

subtree of the namespace that is locally managed—or areplica of an item managed by another

MDS.

In contrast to many other distributed architectures [14, 25, 44, 68, 71],there is no

central management or description of the overall partition. The partition of cached metadata
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Figure 4.2: Structure of the metadata cache as seen by a single MDS. Metadata is partitioned
into subtrees bounded by directory fragments. Each MDS replicates ancestor metadata for any
locally managed subtrees. Large or busy directories are be broken into multiple fragments,
which can then form nested subtrees.
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is “soft state” in that it is described only by the cluster’s collective in-memorycache (and, by

extension, journal contents). Each MDS is aware only of the authority formetadata present

in its own cache. Clients cache subtree boundaries as they encounter themto efficiently direct

metadata requests.

4.3.2 Metadata Replication

Metadata replication serves two key purposes. First, it allows each node tocache a

connected hierarchy, which is important for maintaining cache consistency. Metadata is also

replicated for availability—both when the cluster is under heavy load and when a subset of

nodes fail.

Ceph imposes fourdistributed cache constraintsthat are critical for failure recovery

and simplify normal cache operations: (1) all cached metadata must be attached to the root

of the hierarchy (i. e. all ancestors must also be cached); (2) any directory fragment bounds

for an authoritative subtree,i. e. the root directory fragments of any child sub-trees, though

not necessary they dentries they contain, must have local replicas; (3)the authority for any

replicated metadata must be known; and (4) all replicas must be known by theauthority.

Constraints (1) and (2) ensure that path resolution can start at any node, and that an

MDS resolving a path will know when traversal reaches a subtree boundary. Replicating an-

cestor metadata further ensures that, for example, the failure ofmds0—which manages the root

directory—will not prevent path traversal on other nodes managing nested subtrees. Similarly,

popular directories are flagged for replication, allowing most read-only requests to be serviced

even if the authoritative MDS has failed.

46



Constraints (2) and (3) ensure that it will be clear to which MDS we should delegate

if path traversal reaches the edge of an authoritative subtree: the bounding directory fragment

replica will indicate the authority for the nested subtree. Note that replicating adirectory frag-

ment does not imply replication of its contents (dentries and inodes)—only thatthe replica will

remain informed of the fragment’s authority. Finally, constraint (4) facilitateslocking when

operations affect replicated metadata, and ensures authoritative metadatacan be expired from

the cache after replicas are destroyed.

4.3.3 Locking

Each piece of replicated metadata is protected by a lock—a simple distributed state

machine that controls whether an MDS can read or modify a given set of fields. Locking is fine-

grained: although each dentry is protected by a single lock (controlling whether that element of

the namespace can be read), each inode has five locks, each controllinga different set of related

fields (e. g. link count and anchor status; file ownership and mode; file size andmtime; directory

fragmentation). Lock acquisition is ordered by〈locktype,ob ject〉 to avoid deadlock.

Each lock’s state machine is constructed to minimize MDS interaction for the ex-

pected usage of the protected fields. Most fields are protected by a simple lock that keeps

replicas consistent and readable by default, but allows an exclusive write lock on the authority

for updates. File size andmtime, on the other hand, are protected by a lock with states cor-

responding to modes of client file access: single client, shared read, or mixed read/write or

shared write. A “scatter” lock regulates themtimefield for directory inodes when fragment(s)

are managed by different MDSs than the inode: concurrent updates are allowed unless the lock

47



is moved to a state that combines values and allowsmtimeto be read.

Ordinarily all update operations are forwarded to the metadata object authority for se-

rialization and journaling. A few operations (link, unlink, andrename) affect multiple metadata

objects that may be managed by different MDS nodes throughslave updates. For example, if

link is creating a hard link in a directory on the current MDS that refers to an inode on a different

MDS, it will issue a slave request to increment the link count. Slaved updatesare applied using

a two-phase commit protocol: once all slaves have journaled a “prepare”event, the coordinating

MDS journals the update (effectively committing the transaction), and slaves journal matching

“committed” events to close the transaction state.

4.3.4 Load Balance

Each MDS monitors the popularity of cached metadata through counters associated

with each inode and directory fragment. Each inode popularity vector includes a read and a

write counter, while directory fragments additionally monitorreaddir operations and the fre-

quency that metadata is fetched from or committed to the object store. In additionto its own

popularity, each directory maintains three additional load vectors that formsummations over

metadata nested deeper within the hierarchy: one for all nested metadata, one for all nested

metadata for which the current node is authoritative, and one for authoritative metadata within

the current subtree only.

When an MDS services client requests, the appropriate counters are incremented on

the affected metadata and its ancestors in order to provide a hierarchical view of metadata

popularity, which is in turn used to inform replication and migration decisions. An exponential
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decay factor is applied when counters are read, providing a smoothed approximation of recent

popularity.

Nodes in the MDS cluster periodically share their overall load level, as well as the

cumulative popularity of locally managed metadata grouped by the authoritativeMDS of the

immediate ancestor for each subtree. This allows each overloaded node to determine the fraction

of its overall workload to shed to underloaded nodes, while favoring migrations that reunify

child subtrees with their parents. The hierarchical popularity accounting isthen used to select

appropriately sized subtrees to migrate.

While the popularity counters measure the frequency of metadata access, afinal

counter for each directory measures popularityspread. Each directory has a short list of the

clients to last access its contents. The spread counter is incremented only when a new client’s

request is processed. Spread helps inform metadata replication decisions for availability, as

demonstrated in Section 4.5.7.

4.3.5 Subtree Migration

Each subtree migration is a transfer of all cached metadata for the subtree.This

exchange includes non-dirty metadata (that, strictly speaking, is not needed for correctness)

because cache-worthiness is presumably unrelated to which MDS managesit, and the one-time

cost during migration is significantly less expensive than re-fetching evena small subset of the

data from the metadata store.

Migration involves a few initial message exchanges to set up the transfer, and then

a two-phase commit: the “importing” node journals a copy of all imported metadata (Import-
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Start), the “exporting” node commits the migration by journaling an Export event, and the

importer journals an ImportFinish to close the transaction in its journal. Any “bystander” nodes

who also replicate the root of the subtree are notified before the migration begins and after it

completes, so that any cache expiration messages can be directed at both the old and new subtree

authorities. This is necessary to ensure expirations are reliably delivered in the face of importer

or exporter node failure, to preserve cache invariant (3). (A failureof both nodes is handled

during theresolvephase; see Section 4.4.3.4.)

The relative ease with which subtrees are migrated is made possible by embedded

inodes, which place all metadata within a single hierarchical namespace with a well-defined

partition. Similarly, the use of a shared object store for metadata storage facilitates migration

for arbitrarily large subtrees of the file system, as each migration involves only the transfer of

cachedmetadata.

4.3.6 Directory Fragments

Metadata replication facilitates the distribution of read operations only, while subtrees

are normally partitioned at the granularity of the directory hierarchy. Neither mechanism ad-

dresses load imbalance associated with individual directories that are extremely large or heavily

updated (as in many high performance computing applications [98]). Moreover, our basic ap-

proach to directory metadata storage (each directory’s dentries and inodes written to a single

object) does not scale well to large directories, nor does prefetching theentire directory always

make sense in such a scenario.

In order to address both issues, Ceph extends the directory hierarchyto allow di-
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Figure 4.3: Directories are fragmented based on a tree in which each interior node hasa 2n

children, and leaves correspond to individual fragments. Fragments are described by a bit pat-
tern and mask, like an IP subnet, partitioning an integer namespace. Dentriesare assigned to a
specific fragment using a hash functions.

rectory contents to be broken into multiple fragments. The one-to-many relationship between

directory inodes and directory fragments is specified by afrag treestructure stored in the in-

ode. An integer namespace is partitioned into one or more fragments based ona tree in which

interior vertices split by powers of two, and the leaves are individual fragments, as illustrated

in Figure 4.3. Each fragment is described by a bit mask (indicating which bits are significant)

and a value for those bits, like an IP network and netmask. Directory entriesare mapped into a

particular directory fragment by hashing the file name and looking up the resulting value in the

frag tree.

Each directory fragment’s metadata are stored in a separate object, allowingextremely

large directories to be stored efficiently.Readdirproceeds in fragment order and returns meta-

data in fragment-sized chunks, preserving prefetching performance for applications that touch

every file in the directory. Because our subtree-based metadata partition isdefined in terms

of directory fragments, load can be finely delegated by migrating fragments between MDS

nodes. Any fragment can be split into 2n sub-fragments if it becomes large or busy. Conversely,

fragments can be rejoined if load decreases or a directory shrinks. There is an I/O cost as-
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sociated with fragment splits and merges, as both operations involve writing out the resulting

per-directory fragment metadata objects.

4.3.7 Traffic Control

To effectively adapt to a changing workload, the MDS cluster must also cope with

situations where a large number of clients access the same file or directory in the hierarchy at

the same time, even suddenly and without warning. Extremely popular files anddirectories

and sudden “flash crowds” are common in scientific computing workloads [98] (where large

numbers of nodes may be acting in unison) and general purpose workloads where large numbers

of users access similar files due to external events. If tens of thousandsof clients access a single

MDS simultaneously, that node will not be able to handle the request workload efficiently.

The fundamental problem is client knowledge of the metadata partition: if all clients

know where to access any given piece of metadata at any time (based on a well-defined hashing

strategy, for instance) then there is nothing to prevent them from simultaneously accessing the

same item. Similarly, if clients are ignorant of the metadata distribution, then their requests

must be directed randomly and forwarded within the MDS cluster, or pass through some sort of

proxy, in either case requiring an extra network hop for all requests. Ideally, one would like a

combination of the two situations: access to unpopular items to be directed at the authoritative

MDS nodes, and access to popular items to be directed at many or all nodes (each replicating

the popular metadata) to distribute traffic.

Ceph controls how client requests are directed by using clients’ initial ignorance of the

metadata distribution to achieve near-ideal traffic flow for both popular andunpopular metadata.

52



All MDS responses sent to clients include current replication information—that is, which MDS

nodes the client should contact in the future—for the metadata requested and their ancestors,

which are then cached on the client. For unpopular items, the MDS cluster tells clients to

direct future requests only at the authoritative node, while for popular items the client is told

the item is replicated on many or all nodes. Because the popularity metric approximates the

prevalence of an item in all client caches, the MDS cluster can effectivelybound the number of

nodes believing any particular file or subtree of the file hierarchy is locatedin any one place at

all times, thus avoiding potential flash crowds before they can occur while still allowing most

requests for unpopular data to be directed efficiently.

This strategy works for both explored and unexplored portions of the hierarchy. Be-

cause client requests are directed based on the deepest known prefix, any potential flood of

requests will initiate from a set of mutually known (and thus popular) directories—in extreme

cases, the root directory, which is known to all clients and consequently highly replicated.

4.4 Failure Recovery

Robust failure recovery is critical in distributed systems, where a large number of

distinct pieces of hardware increases the likelihood of failure. Although our metadata architec-

ture is based on journaling, a relatively standard mechanism for facilitating failure recovery, a

number of factors complicate recovery. First, journals are large: entriesnear the tail may be

significantly out of date. Second, the migration of metadata between serversintroduces inter-

vals of ambiguous authority that must be resolved during recovery. Third, our distributed cache
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relies on a large amount of “soft” (non-journaled) state in order to function properly, including

the identity of replicas and lock states. Because journaling such metadata would be exorbitantly

expensive, it must be reliably reconstructed during failure recovery.Finally, open file state is

associated with inodes—independent of the namespace—and shared onlywith clients, who are

not always aware of metadata updates that may have relocated an open file’s position in the

hierarchy.

4.4.1 Journal Structure

Each MDS maintains an independent journal containing a chronological sequence of

atomicevents, each of which typically includes some modified or contextual metadata. Ceph

logically divides the event sequence intosegments, and begins each segment with a special

subtree mapevent that describes which subtrees of the hierarchy the MDS was authoritative for

at that point in time.

Because inodes are embedded within the hierarchy, each journaled update must be ac-

companied by the modified metadata’s ancestors in order to locate the item within thehierarchy.

To avoid duplication of contextual metadata in the journal, ancestors are journaled only up to

the root of the containing subtree, and each ancestor is journaled only once per segment (unless

it is subsequently modified). Between the subtree map and events that follow,each segment

provides the necessary context to correctly interpret all metadata updates it contains.

Each piece of dirty metadata in the MDS cache is placed on a linked list for the

segment it was most recently journaled in. Before old segments are trimmed from the tail of

the journal, any directory fragments still referenced by the segment dirty list are committed.
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New segments are created shortly after the journal extends onto a new storage object, such

that as segments are trimmed the entire backing objects can be deleted to reclaim disk space.

This allows each MDS to trim its own journal with minimal overhead by simply traversing the

appropriate dirty list, in contrast to the cleaner in log-based file systems.

4.4.2 Failure Detection

Each active MDS sends regular beacon messages to a central monitor responsible for

coordinating cluster membership. If an MDS does not check in for a sufficiently long interval, it

is declared down and the status change is broadcast to surviving nodes. MDS processes who do

not receive timely positive acknowledgement in response to their own beacons commit suicide.

4.4.3 Recovery

Each MDS consists entirely of a running process with a large in-memory cache, uti-

lizing a distributed, shared object storage substrate. MDS failure does not result in data un-

availability in the way that hardware failure in systems utilizing a local hard disk or NVRAM

might. Once an MDS is declared down, a process running on any hardware node can be chosen

to recover in its place.

Recovery is broken into four stages. The contents of the journal are first read into

memory, ambiguous subtree authority and the fate of distributed transactions are resolved, client

sessions are reestablished to restore open file state, and finally the node rejoins the cluster’s

distributed cache.
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4.4.3.1 Replay

Journalreplaybegins with the first complete segment in the journal. The MDS simply

reads all journal events in chronological order and adds any modified or contextual metadata

to its in-memory cache. This serves to recover any dirty metadata that may not have been

committed before the failure, as well as to prime the new MDS’s cache.

Special note is made of events that indicate distributed transactions. For example, the

MDS maintains a list of ImportStart events that are not followed by a matching ImportFinish,

as indicates an ambiguous subtree import that may or may not have been committedby the

exporting MDS. Similar message pairs reflect anchor table updates or slaveupdate transactions

made on behalf oflink, unlink, or renameoperations coordinated by other nodes.

4.4.3.2 Resolve

During theresolvephase, the fate of ambiguous transactions in the journal is deter-

mined. Each recovering node broadcasts aresolvemessage to all MDSs that includes a list

of locally managed subtrees (described by the root and bound directoryfragment identifiers),

ambiguous subtrees that were mid-import at the time of failure, and any slave updates (see

Section 4.3.3) initiated by the target MDS whose fate is unknown. Any surviving (non-failed)

nodes in the cluster send similar resolve messages to each recovering MDS.

As each resolve is processed, the recovering MDS updates its own cache to reflect

the authority of subtrees explicitly claimed by other nodes. Ambiguous slave updates are cross-

checked against the local list of recently committed transactions, and a replyis generated to

inform the recovering node. Once all resolve messages have been received, ambiguous imports
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are resolved by simply checking if the subtree was unambiguously claimed by another node. (In

the case of failure during subtree migration, only the importer will be unsure of the result; the

exporter either did or did not write a commit to its journal.) Surviving bystanders also examine

resolve messages to learn interrupted migration outcomes.

Finally, each recovering node trims all non-authoritative metadata from its cache that

is not an ancestor of authoritative metadata (and thus required) or subtree bound. This is nec-

essary because it is impossible to know whether any non-authoritative metadata was updated,

moved, or even deleted at some point after it was mentioned in the local journal. To ensure the

remaining replicated ancestor replicas are correct, all nodes replicating arenamed file or direc-

tory mention the event in their journal. This restores all distributed cache constraints except

(4)—replica identity (see Section 4.3.2).

4.4.3.3 Reconnect and Open File State

Open file state, unlike other soft state, is shared not with other MDSs but withclients

mounting the file system. Each recovering MDS reestablishes prior client sessions and queries

clients for previously issued open file handles, which are necessary to recreate the corresponding

capability and lock state in the MDS cache.

However, file opens are not synchronously journaled by the MDS, bothto avoid the

additional latency, and because most files are opened read-only (reliable atimeupdates are not

deemed a priority). Instead, the MDS periodically writes recently opened inodes to the journal,

and clients describe their capabilities by both inode number and last known filename. If an open

file’s inode was not recovered from the cache, the filename will allow it to belocated within the
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hierarchy. (Again, mentioning renamed replicas provides key information needed to reliably

interpret paths for non-authoritative inodes.)

4.4.3.4 Rejoin

The final stage of recovery restores distributed cache and lock state. Recovering nodes

send aweak rejoinmessage to each MDS, declaring any metadata replicas that the recipient is

authoritative for, and any recovered file capabilities the sender is not authoritative for.

Surviving nodes (who have lost no state) sendstrong rejoinmessages to recovering

nodes, declaring any replicas that they hold, as well as asserting lock state. Any declared repli-

cas that the recovering node does not already hold in its cache are obtained from the survivor:

an item’s absence in the journal implies it has not been modified and the replica istherefore up

to date.

Recovering nodes use rejoin messages to initialize the lists of known replicas associ-

ated with each piece of metadata, and to choose initial lock states that are compatible with any

surviving nodes. Recovered capabilities listed in weak rejoins that fall within locally managed

subtrees are claimed and managed locally, with new client sessions established as necessary.

Although migrating capability management is not strictly necessary (the other MDS clearly

managed the capability just before the failure), reusing the capability migrationmechanism in

place for subtree migration simplified our implementation. Finally, arejoin ackmessage is sent

to initialize replica locks, and the recovered node becomes active.
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4.4.4 Discussion

Any “dirty” metadata recovered from the journal will be restored to the in-memory

cache. However, at least some of that metadata will likely have been committed by the prior

MDS instance before it failed. Although version numbers are attached to allmetadata objects

to ensure correctness, some unnecessary I/O may result after recovery.

On the other hand, the use of a large journal provides a recovered node with the

warmest subset of the node’s in-memory cache prior to failure. Consequently, simply killing an

MDS process and restarting it is actually faster than if it were cleanly shut down. This durability

resembles that in the Google File System’s MDS [30].

A limitation of this design (and, partly, my implementation) is that the resolve and

rejoin recovery phases require the participation of all failed nodes. Although in certain cases

this requirement can be relaxed, in general a multi-node failure requires parallel recovery.

4.5 Evaluation

The design of Ceph’s MDS architecture is evaluated in three stages. First,I evaluate

the relatively efficiency of static subtree, dynamic subtree, and hash-based approaches in a

simulation environment to demonstrate the advantages of an dynamic, adaptiveapproach. I

next evaluate the performance of Ceph’s MDS, by analyzing static file system snapshots and

captured file system traces in order to better understand metadata workloads and their impact

on performance. Finally, I measure the performance of the implementation with arange of

micro-benchmarks and capture workloads under normal-use and failurescenarios.
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4.5.1 Metadata Partitioning

I evaluate the relative performance and scalability of a dynamic subtree-based parti-

tion compared to alternative approaches: namely, a static subtree partition (e. g.a collection of

NFS servers), directory-based hashing (e. g.Lustre), file-based hashing, and Lazy Hybrid [15],

a hybrid hash-based approach proposed by Brandtet al. . This comparative evaluation is per-

formed in an event-driven simulation environment.

Initially, I fix the amount of MDS memory per node and scale the entire system:

file system size, number of MDS servers, and client base. Figure 4.4 shows the performance

degradation of individual MDS nodes for different system sizes under a predominately static

(file system and client) workload. Dynamic and static subtree partitioning showthe best per-

formance, the only difference between the two being that the static strategy does not employ

load balancing to adjust the initial partition. In a real workload environment, astatic partition is

unlikely to be practical as file systems and workloads evolve over time and hierarchies are not

typically as easily partitioned as our workload (a large collection of home directories). The ap-

parent performance penalty for load balancing is due to an unfair distribution of metadata: some

MDS nodes manage a small amount of metadata with extremely high efficiency whileothers

have poor cache performance, resulting in a higher (though unfair) overall cluster throughput.

More significantly, the performance of file and directory hashed distributions degrades more

quickly than subtree based partitions due to inefficiencies analyzed in Section 4.5.1.1.

File hashing and lazy hybrid distributions show significantly lower performance due

to inefficient metadata I/O operations, which involve disk requests to load individual inodes
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Figure 4.4: MDS performance as file system, cluster size, and client base are scaled.

into cache. In contrast, the subtree and directory hashing partitioning strategies exploit the

presence of locality in the workload by embedding inodes and storing entire directories together

on disk to allow efficient lookups and prefetching. The benefits of this approach are best seen

by contrasting the performance of the directory and file hashing strategies, which are otherwise

identical.

Lazy Hybrid performance is interesting because it scales almost linearly due to its

ability to avoid performing most path traversals under the evaluated workload. However, this

ability is predicated on the rarity of modifications to the directory permissions andhierarchy

which must be (lazily, but eventually) propagated to potentially large quantitiesof metadata.

4.5.1.1 Prefix Caching

The performance of metadata partitioning strategies is tightly linked to metadata

cache efficiency. One of the primary factors affecting cache utilization is the need to cache

prefix inodes of ancestor directories for the purposes of path traversal. The overhead associated
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MDS cluster size scales. Hashed distributions devote large portions of theircaches to ancestor
directories. The dynamic subtree partition has slightly more ancestors than thestatic partition
due to the re-delegation of subtrees nested within the hierarchy.

with caching ancestors for hashed partitions is particularly high because directories are scat-

tered throughout the hierarchy and the prefix directory inodes to locate them must be replicated

widely throughout the cluster. Figure 4.5 shows the percentage of MDS cache associated with

ancestors as file system, client base and cluster size scale (as in Figure 4.4). The utilization for

the static subtree partitioning represents a baseline for the file system simulatedand is related

to the ratio of directories to files, the average branching factor and average file depth. The dy-

namic subtree partition devotes slightly more cache to prefixes to anchor subtrees nested within

the hierarchy that have been re-delegated to other MDS nodes to balanceload.

The consumption of cache memory by ancestor metadata has the effect of decreasing

the cache hit rate and thus overall MDS performance. The extent to whichthis affects perfor-

mance is related to the average depth of directories in the hierarchy; obviously, a mostly flat

namespace is more easily distributed—Lazy Hybrid tries to artificially flatten the namespace

to achieve this effect. Ancestor caching overhead is also greater for smaller cache sizes both
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Figure 4.6: Cache hit rate as a function of cache size (as a fraction of total file systemsize).
For smaller caches, inefficient cache utilization due to replicated ancestorsresults in lower hit
rates.

because memory is more scarce and because the demand for prefixes forpath traversal is related

to the distribution of requests throughout the file system, not just factors proportional to the size

of the cache. Figure 4.6 shows how cache performance varies with the cache size, expressed

as a fraction of the total size of the file system’s metadata. Note that the convergence of the

hit rates as cache size increases is predicated on the degree of locality in the workload; a more

random distribution of requests will result in a performance similar to smaller cache sizes.

4.5.1.2 Traffic Control

One of the key advantages of a dynamic partitioning strategy is the ability to manage

client ignorance to prevent simultaneous access by tens of thousands ofusers from overwhelm-

ing an individual metadata server. Figure 4.7 shows the number of requests processed over time

by individual nodes in the simulated MDS cluster when 10,000 clients simultaneously request

the same file, a scenario typical of many scientific computing workloads. Requests are directed
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Figure 4.7: No traffic control (top): nodes forward all requests to the authoritativeMDS who
slowly responds to them in sequence. Traffic control (bottom): the authoritative node quickly
replicates the popular item and all nodes respond to requests.

randomly because clients do not already know which MDS node is responsible for the file.

Without traffic control (top), MDS nodes simply forward requests to the authoritative node who

is quickly saturated and slowly (and, in real situations, inefficiently) responds. When traffic

control is enabled (bottom), the authority quickly recognizes the file’s sudden popularity and

replicates the metadata on other nodes.

The response time from when the flash crowd begins until it is effectively distributed

across the cluster is dependent on a number of factors, including the replication threshold, the

rate at which client requests can be received and then forwarded by MDS nodes, and the latency

of I/O requests that may be required to load the requested metadata into the cache. This response

time could be reduced if non-authoritative MDS nodes recognized the sudden flood of requests

and preemptively cached the metadata being requested without waiting to be told todo so, or if

the authoritative node noticed the flood of requests before waiting for the metadata to be loaded

from disk.
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4.5.2 Embedded Inodes

I next consider the performance implications of a metadata storage strategy inwhich

inodes are embedded inside directories. I analyze a range of static file system snapshots, in-

cluding a shared university engineering department file server (soe.*) [74], an aged (10 year)

web and email server file system (destro), a software development server (yakko), and a col-

lection of file systems of varying vintages (0-8 year) for a commercial web (and email) host

(web.*). I measure the performance of a fully functional implementation with a range of micro-

benchmarks and a 2.5 hour web and email workload trace (destro).

This set of experiments primarily reflects general purpose—as opposedto scientific

computing—file system workloads at scale, mainly because paired file systemsnapshot and

workload data from high performance computing systems was not readily available to me. MDS

performance under synthetic workloads based on common scientific computing workload pat-

terns (as described by Wanget al. [98]) is considered in Sections 4.5.4 and 4.5.5.

4.5.2.1 Directory Sizes

I begin by looking at typical directory sizes, and show that the increasedsize of di-

rectories due to embedded inodes has little impact on performance compared tothe overhead

of fetching inodes separately. Figure 4.8 shows the cumulative directory size distributions for

a range of file system snapshots and the Linux kernel source (which I use for certain bench-

marks). More than 95% of directories contain less than 100 entries, and would occupy less

than 20 KB with embedded inodes. This allows for files averaging 20 characters and 160 byte

inodes in place of 64-bit inode numbers—a 6-fold increase in storage. However, for small I/Os,

65



Directory size (entries)
1 10 100

C
um

ul
at

iv
e 

F
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

destro

yakko

kernel

web.janky

web.looney

web.randy

web.spacey

soe.csl

soe.fac

soe.grads

soe.etc

Figure 4.8: Cumulative directory size for a variety of static file system snapshots. Manydirec-
tories are very small (or even empty), and less than 5% contain more than 100entries.

positioning delays dominate. For example, a random seek followed by a single4 KB read takes

about 13 ms on a commodity 500 GB 7200rpm SATA disk. Reading 20 KB is not significantly

slower, and more than 512 KB (a 2500 file directory) can be read in twice that time. If the seek

is less than 1 MB past the previous read, 256 KB (1300 files) can be readin twice the time of

4 KB.2

4.5.2.2 Metadata Prefetching

The effectiveness of loading entire directories of metadata into cache in a single I/O

is evaluated by measuring the rate at which inodes are accessed for the first time (e. g. due to

a stat or open) relative to the rate directories are loaded. For Linux kernel compilations—the

default and a random configuration—I found that 25-70% of loaded inodes were subsequently

2These measurements were made on a Western Digital WD5000YS-01M under Linux 2.6.21 withO DIRECT.
The long seek test measures the time to readn 4 KB blocks of data at a random block-aligned disk offset, averaged
over 1000 iterations. The short seek test first reads a random 4 KB block and then measures the time to readn blocks
of data located a short distance (between zero and 1 MB) past that.
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used (out of 500 directory loads). Replaying the destro file system traceindicated only a 1.3%

hit rate (out of 8000 directory loads), primarily due to large Maildir mailboxes. However, for

44% of all directory loads, at least one inode was used, for 18% at least two were, and for

11% at least five were; as seen above, avoiding each additional I/O is comparable to loading an

additional 500-2000 embedded inodes. Most importantly, our strategy eliminates the risk of an

I/O storm loading thousands of individual inodes if all files are accessed(e. g.as with an email

search orls -l).
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4.5.2.3 Multilink File Prevalence and Locality

I analyze a range of file system snapshots to determine the prevalence anddistribution

of hard links. First, in Figure 4.9, we observe that multilinked files are rarelyfound in typical

file systems. When they do occur, all links often appear in the same directory. Moreover, when

multilink files do span directories, they usually have cohorts linked in parallel into the same

pair(s) of directories (as fromcp -lr, which creates a duplicate directory tree that links instead

of copies the original files). Anecdotally, I found that in each of the analyzed file systems with

high rates of hard links, a handful of users were responsible.

4.5.2.4 Anchor Table Performance

When all links for a file occur in the same directory, there is no significant perfor-

mance impact on reads: the remote dentry and inode are loaded into the cachesimultaneously,

avoiding any anchor table query. For link creation, an additional transaction occurs against the

anchor table and existing inode, increasing latency by 150% to 230% (depending on whether

the inode and anchor table are on the same MDS as the new link) in our gigabit ethernet-based

environment.

To measure the impact of the parallel link use-case, I consider the Linux 2.6.22 kernel

source and a duplicate tree with links (created withcp -lr). Starting from a cold cache, a

recursive walk (and stat) of the original tree took 13.4±1.1 seconds, while the copy took 17.9±

.9 seconds—only 34% longer. The limited impact is due to the fact that only one anchor table

query is needed for each directory: once its contents have been loadedinto the cache for the

first hard link, any subsequent parallel links can also be resolved. Consequently, as seen in
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Figure 4.9, a relatively small fraction of all multilink files require significant interaction with

the anchor table, limiting its impact on performance.

4.5.2.5 Hard Link Lifetime

Multilink files are rarely encountered in part because they are primary used for ma-

nipulating temporary files. The average time interval during which an inode has a link count

greater than one in the destro trace is only a few milliseconds. Ceph’s current implementation

näıvely keeps the entire anchor table in RAM on a designated MDS, such that 1 GB would store

roughly 20 million records, enough for 1–25 billion files (40 TB–1 PB of 40 KB files), given

the rates in Figure 4.9. However, because measured workloads rarely require table queries, and

most updates are short-lived and never read, a more sophisticated table management approach

should scale well.

4.5.3 Journaling

I next consider the performance implications of large journals by analyzingthe effect

of journaling on metadata I/O under a range of workloads.

4.5.3.1 Journal Interval

Large journals optimize metadata I/O by masking multiple metadata updates to the

same objects and combining all dirty data for a directory into a single commit I/O. For example,

for a Linux kernel untar, approximately 30% of journaled entries in each segment are obsolete

by the time they are trimmed (due to themknod, utime, and size/mtimeflush sequence for each
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file).

More importantly, each directory’s dirty metadata is committed in a single I/O, re-

sulting in significantly fewer directory commits than metadata updates. The extentto which

we are able to group updates into a single commit is related to the time interval covered by the

journal, and the type of directory locality in the workload. For a kernel compilation workload,

the commit rate (relative to the total number of metadata updates), drops from 10% to 3% as the

journal interval grows from 1 to 10 seconds, while for the destro workload it drops to 5% only

after 5 minutes, showing a surprisingly long locality interval. Journal entriesin our workloads

averaged 300-800 bytes each3; a 200 MB journal would contain on the order of 250,000 to

600,000 entries, a two to five minute interval for an MDS doing 2,000 updates per second.

4.5.3.2 Ancestor Metadata

I measure the overhead of journaling contextual ancestor metadata, whichare needed

to place updates in the hierarchy during journal replay. Although naı̈vely including contextual

metadata in each entry bloats the journal by 100-200% (for untar and compilation workloads),

including any given ancestor just once per 1 MB segment increased the journal size by only

.05%-.2%. That said, journal size is not terribly significant, as sequentialI/O is easy to scale.

A typical MDS would only stream to the journal at a few megabytes per second, an order

of magnitude slower than a single disk, producing a significantly lighter I/O workload than

thousands of updates to hundreds of individual objects.

3Journal entries typically contain multiple inodes, dentries, and other metadata associated with the operation
(such as inode number allocation). For example, a file creation journal event includes the inode and dentry for both
the new file and its parent directory (whosemtimechanged). No particular attempt is made to efficiently represent
this data, as journal bandwidth—in terms of bytes per second—is relativelylow.
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Figure 4.10: An MDS cluster adapts to a varying workload. At times 200 and 350 the workload
shifts, as 400 clients begin creating files in private directories and then in a shared directory. In
both cases load is redistributed, in the latter case after the large (and busy)directory is frag-
mented. At time 280 two additional MDSs join the cluster.

4.5.4 Adaptive Distribution

Figure 4.10 demonstrates the MDS cluster’s ability to adapt to varying file and direc-

tory creation workloads. At time 200, the cluster workload shifts as 400 clients begin creating

files in private directories off of the root, all initially managed bymds0. After a few seconds

the workload is redistributed, and at time 270 two additional servers join the cluster. At time

350, the workload shifts again when all clients begin creating files in thesamedirectory. A

few seconds later the (now large) directory is fragmented and load is againredistributed. The

directory is fragmented a second time around time 380, resulting in a dip in throughput as the

new resulting fragments are flushed to disk. Other cluster-wide dips and peaks in throughput are

primarily due to contention in the shared storage pool, underscoring the importance of efficient
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Figure 4.11: Per-MDS throughput under a variety of workloads and cluster sizes. As the cluster
grows to 128 nodes, efficiency drops no more than 50% below perfect linear (horizontal) scaling
for most workloads, allowing vastly improved performance over existing systems.

I/O.

4.5.5 Metadata Scaling

I measure the scalability of the MDS cluster use a 430 node partition of thealc

Linux cluster at Lawrence Livermore National Laboratory (LLNL). Figure 4.11 shows per-

MDS throughput (y) as a function of MDS cluster size (x), such that a horizontal line represents

perfect linear scaling. In themakedirsworkload, each client creates a tree of nested directories

four levels deep, with ten files and subdirectories in each directory. Average MDS throughput

drops from 2000 ops per MDS per second with a small cluster, to about 1000 ops per MDS

per second (50% efficiency) with 128 MDSs (over 100,000 ops/sec total). In the makefiles

workload, each client creates thousands of files in the same directory. When the high write

levels are detected, fragments the shared directory and relaxes the directory’s mtimecoherence
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to distribute the workload across all MDS nodes. Theopensharedworkload demonstrates read

sharing by having each client repeatedly open and close ten shared files. In theopensshwork-

loads, each client replays a captured file system trace of a compilation in a private directory.

One variant uses a shared/lib for moderate sharing, while the other shares/usr/include,

which is very heavily read. Theopensharedandopenssh+includeworkloads have the heav-

iest read sharing and show the worst scaling behavior, I believe due to poor replica selection

by clients.4 openssh+libscales better than the trivially separablemakedirsbecause it contains

relatively few metadata modifications and little sharing. Although I believe that contention in

the network or threading in the messaging layer further lowered performance for larger MDS

clusters, my limited time with dedicated access to the large cluster prevented a more thorough

investigation.

Figure 4.12 plots latency (y) versus per-MDS throughput (x) for a 4-, 16-, and 64-node

MDS cluster under themakedirsworkload. Larger clusters have imperfect load distributions,

resulting in lower average per-MDS throughput (but, of course, much higher total throughput)

and slightly higher latencies.

Despite imperfect linear scaling, a 128-node MDS cluster running the Cephproto-

type can service more than a quarter million metadata operations per second (128 nodes at

2000 ops/sec). Because metadata transactions are independent of dataI/O and metadata size

is independent of file size, this corresponds to installations with potentially manyhundreds of

petabytes of storage or more, depending on average file size. For example, scientific applica-

tions creating checkpoints on LLNL’s BlueGene/L might involve 64 thousandnodes with two

4Due to limited time with access to the large cluster, this hypothesis was not tested.
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Figure 4.12: Average latency versus per-MDS throughput for different cluster sizes (makedirs
workload).

processors each writing to separate files in the same directory (as in themakefilesworkload).

While the current storage system peaks at 6,000 metadata ops/sec and would take minutes to

complete each checkpoint, a 128-node MDS cluster could finish in two seconds. If each file

were only 10 MB (quite small by HPC standards) and OSDs sustain 50 MB/sec, such a cluster

could write 1.25 TB/sec, saturating at least 25,000 OSDs (50,000 with replication). 250 GB

OSDs would put such a system at more than six petabytes. More importantly, dynamic meta-

data distribution allows an MDS cluster (of any size) to reallocate resourcesbased on the current

workload, even when all clients access metadata previously assigned to a single MDS, making

it significantly more versatile and adaptable than any static partitioning strategy.

4.5.6 Failure Recovery

Recovery from multiple MDS failures is demonstrated in Figure 4.13 in a four node

cluster under a file and directory creation workload. At time 400mds3fails (the process is
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Figure 4.13: Throughput in a small cluster before, during, and after MDS failures attime 400,
500, and two at 450. Unresponsive nodes are declared dead after 15 seconds, and in each case
recovery for a 100 MB journal takes 4-6 seconds.

killed) and is soon replaced. Similarly, two nodes fail at time 450 and another at 500. In each

case, there is a 15 second delay before the non-responsive node is declared dead, after which

point the total recovery time is 4 to 6 seconds, 3 to 4 seconds of which is spent replaying a

100 MB journal. Individual node failures do not disrupt throughput for the rest of the cluster

due to a hierarchical partition of localized client workloads.

In this experiment, each recovered MDS immediately functions at full efficiency be-

cause there are no caching effects under the create-only workload. In general, nodes will recover

warm metadata from the journal, including any recently modified metadata or recently opened

files. Under the kernel compilation workload, I measured metadata recovery at a rate of .45

inodes per journal entry (1200 inodes per megabyte).
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4.5.6.1 Recovery Time

Recovery time is governed by a number of factors, although in most cases itis domi-

nated by failure detection and journal replay. I arbitrarily chose 15 seconds for the configurable

delay before non-responsive nodes are declared dead. Although this period dominates down

time in the experiment above, it should be sufficiently long to avoid failing due to transient

network disruptions.

Replay is limited by the rate that the journal is sequentially read from the object

store—only a few seconds for the 100 MB journal above (partly because it is still cached by

the object storage layer), or 20 seconds for a 500 MB journal at 25 MB/second. Large journals

prolong downtime but prime the recovering node’s cache with warm metadata,resulting in

improved performance once they do become available.

The resolve phase involves exchanging small messages with every other MDS, and

is thus dominated by cluster size. For example, a 10-node cluster with a degenerate partition

of thousands of subtrees still resolves in less than 300 ms. In extremely large clusters, such

an exchange may become significant, although such clusters are also typically equipped with

high-performance networks.

The duration of the client reconnect phase is governed by the number ofclients in the

system, but is bounded by a timeout to avoid waiting for unresponsive clients. This timeout

should balance timely recovery versus the risk of stale file handles on laggyclients. I found that

a reconnect over 1.7 million open files among 1000 client processes (spread across 36 hosts)

took ten seconds.
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Figure 4.14: Per-MDS throughput in a 4-node cluster under a compilation workload with heavy
read sharing of/lib. Replication of popular metadata allows progress to continue even when
the MDS managing the heavily shared directory suffers a failure.

Finally, the rejoin phase is related to the number of MDS nodes and the amount of

metadata replicated by surviving nodes. As with resolve, the exchange ofsmall messages is

fast for all but the largest clusters: for highly separable workloads,rejoin consumes only a few

hundred milliseconds. In a 10-node metadata cluster with extensive metadata replication, a

recovering node spent 6 seconds rejoining: strong rejoin messages, each 5 MB, were processed

from 9 surviving peers, each replicating 30,000 inodes. A final message fetched metadata for

inodes not present in the journal from a survivor.

4.5.7 Availability

Ancestor metadata replication allows nested subtrees to remain available by facilitat-

ing path resolution, as demonstrated in Figure 4.13 by the failure ofmds0(who manages the
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root directory) at time 500. Adaptive replication of popular directories further limits the im-

pact of a node failure: Figure 4.14 shows per-MDS throughput for a four node cluster under a

workload of 40 clients, each replaying an openssh compilation trace with heavy read sharing of

/lib.5 By replicating that directory’s contents across the cluster (in response toits popularity

and read sharing), the failure of its authoritative MDS does not affect other nodes’ workloads.

Clients direct read-only metadata requests (e. g. stat, openfor read) at replicas when a directory

is flagged for replication, improving availability (as in this experiment) and load distribution for

read/write workloads in which metadata updates must be handled by the authoritative node.

4.6 Future Work

Although the MDS implementation utilizes an object-based storage layer, the ap-

proach is enabled primarily by small inode structures. The extent to which it isapplicable to

other storage architectures—including block-based storage—has not been considered in detail.

A number of auxiliary metadata structures are managed in a naı̈ve fashion. The an-

chor table, for instance, is kept entirely in RAM, as is a table of recently client requests (for

avoiding repetition when recovering from communication or node failure) and a handful of

similar structures. I am investigating alternative data structures and update strategies to serve

the same purpose.

I plan to apply simple heuristics to the management of multilink files such that inodes

are embedded in the directories through which they are most frequently referenced.

5MDS throughputs are higher here than in previous experiments due to a workload consisting primarily of non-
update operations.
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4.7 Experiences

The MDS design was vastly simplified by separating it from the object storagelayer,

avoiding concerns about low-level replication, consistency, and data placement. Similarly, de-

spite my original expectation, the use of a large, lazily trimmed journal in combination with

versioning had a simplifying effect on the implementation of the MDS. Although “dirty” state

has to be associated with the journal segment it was last written to, lazy journal trimming elim-

inates most timing constraints on when in-memory state must be committed to the primary

metadata store.

In my initial design, individual directories could be flagged to distribute metadata

using a hash function across all nodes in the cluster, much like some experimental file sys-

tems [13, 20, 67, 76]. This led to a large number of corner cases, particularly relating to the

subtree partition, and did not mesh well with an architecture in which MDS nodes could be

dynamically added or removed from the cluster. By introducing directory fragments and defin-

ing the subtree partition in terms of that abstraction, Ceph simultaneously achieves both fine-

grained load balancing and addresses storage for very large directories, while adding minimal

complexity to the subtree migration infrastructure.

As my distributed metadata cache design and implementation evolved to accom-

modate arbitrary failure, the importance of setting straightforward invariantsbecame clear—

particularly with respect to the subtree migration infrastructure. Simple rules like “a replica

must know the identity of the authoritative copy” made it clear how to directly address—or

avoid—corner cases as they arose.
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One of the largest lessons in Ceph was the importance of the MDS load balancer to

overall scalability, and the complexity of choosing what metadata to migrate where and when.

Although in principle the design and goals seem quite simple, the reality of distributing an

evolving workload over a hundred MDSs highlighted additional subtleties. Most notably, MDS

performance has a wide range of performance bounds, including CPU,memory (and cache ef-

ficiency), and network or I/O limitations, any of which may limit performance at any point in

time. Although I experimented with a variety of MDS load functions (including combinations

of metadata popularity, request rates, and queue lengths), in many casessimply using the CPU

load average works as well as anything else. Furthermore, it is difficult toquantitatively cap-

ture the balance between total throughput and fairness; under certain circumstances unbalanced

metadata distributions can increase overall throughput.

4.8 Conclusions

I describe a clustered metadata server that optimizes I/O to the underlying storage

system, adapts its metadata distribution to the current workload, and tolerates arbitrary node

failure. The MDS embeds inodes inside directories for efficient metadata storage and prefetch-

ing, facilitating an efficient and adaptive hierarchical partition of workload. Metadata updates

are first written to large per-MDS journals, which aggregate many updatesto the same directory

into a single commit to the primary metadata structures. This reduces the I/O load onthe under-

lying storage system and improves MDS performance after recovery from a failure by priming

its cache. We adaptively partition workload based a hierarchy defined in terms of directory
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fragments, facilitating fine-grained load balancing and simple, efficient storage for large direc-

tories. Finally, ancestor and popular metadata is replicated across multiple nodes for improved

availability—both when the cluster is under load, and when a subset of nodes fail.

I consider the merits of a dynamic subtree-based partitioning strategy relative to al-

ternative approaches in a simulation environment. The metadata storage strategy is evaluated

by analyzing a range of static file system snapshots and workloads. I demonstrate the vastly

reduced I/O workload resulting from large journals that exploit workloadlocality, and con-

sider the prevalence of hard links and their impact on the performance of our embedded inode

strategy. Finally, I demonstrate the adaptive workload distribution and failure recovery in the

implementation in terms of performance and metadata availability.
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Chapter 5

Data Distribution

Object-based storage is an emerging architecture that promises improved manageabil-

ity, scalability, and performance [7]. Unlike conventional block-based hard drives, object-based

storage devices (OSDs) manage disk block allocation internally, exposing an interface that al-

lows others to read and write to variably-sized, named objects. In such a system, each file’s data

is typically striped across a relatively small number of named objects distributedthroughout

the storage cluster. Objects are replicated across multiple devices (or employsome other data

redundancy scheme) in order to protect against data loss in the presence of failures. Object-

based storage systems simplify data layout by replacing large block lists with small object lists

and distributing the low-level block allocation problem. Although this vastly improves scala-

bility by reducing file allocation metadata and complexity, the fundamental task of distributing

data among thousands of storage devices—typically with varying capacities and performance

characteristics—remains.

Most systems simply write new data to underutilized devices. The fundamental prob-
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lem with this approach is that data is rarely, if ever, moved once it is written. Even a perfect

distribution will become imbalanced when the storage system is expanded, because new disks

either sit empty or contain only new data. Either old or new disks may be busy, depending

on the system workload, but only the rarest of conditions will utilize both equally to take full

advantage of available resources.

A robust solution is to distribute all data in a system randomly among available stor-

age devices. This leads to a probabilistically balanced distribution and uniformly mixes old and

new data together. When new storage is added, a random sample of existingdata is migrated

onto new storage devices to restore balance. This approach has the critical advantage that, on

average, all devices will be similarly loaded, allowing the system to perform well under any

potential workload [84]. Furthermore, in a large storage system, a single large file will be ran-

domly distributed across a large set of available devices, providing a high level of parallelism

and aggregate bandwidth. However, simple hash-based distribution fails tocope with changes

in the number of devices, incurring a massive reshuffling of data. Further, existing randomized

distribution schemes that decluster replication by spreading each disk’s replicas across many

other devices suffer from a high probability of data loss from coincidentdevice failures.

I have developed CRUSH (Controlled Replication Under Scalable Hashing), a pseudo-

random data distribution algorithm that efficiently and robustly distributes object replicas across

a heterogeneous, structured storage cluster. CRUSH is implemented as a deterministic function

that maps an input value—typically an object or object group identifier—to a list of devices on

which to store object replicas. This differs from conventional approaches in that data placement

does not rely on any sort of per-file or per-object directory—CRUSHneeds only a compact, hi-
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erarchical description of the devices comprising the storage cluster and knowledge of the replica

placement policy. This approach has two key advantages: first, it is completely distributed such

that any party in a large system can independently calculate the location of any object; and sec-

ond, what little metadata is required is mostly static, changing only when devices are added or

removed.

CRUSH is designed to optimally distribute data to utilize available resources, effi-

ciently reorganize data when storage devices are added or removed, and enforce flexible con-

straints on object replica placement that maximize data safety in the presence of coincident or

correlated hardware failures. A wide variety of data safety mechanisms are supported, includ-

ing n-way replication (mirroring), RAID parity schemes or other forms of erasure coding, and

hybrid approaches (e. g. RAID-10). These features make CRUSH ideally suited for manag-

ing object distribution in extremely large (multi-petabyte) storage systems wherescalability,

performance, and reliability are critically important.

5.1 Related Work

Object-based storage has recently garnered significant interest as a mechanism for

improving the scalability of storage systems. A number of research and production file sys-

tems have adopted an object-based approach, including the seminal NASD file system [33], the

Panasas file system [68], Lustre [14], and others [76, 30]. Other block-based distributed file

systems like GPFS [86] and Federated Array of Bricks (FAB) [82] facea similar data distribu-

tion challenge. In these systems a semi-random or heuristic-based approach is used to allocate
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new data to storage devices with available capacity, but data is rarely relocated to maintain a

balanced distribution over time. More importantly, all of these systems locate datavia some sort

of metadata directory, while CRUSH relies instead on a compact cluster description and deter-

ministic mapping function. This distinction is most significant when writing data, as systems

utilizing CRUSH can calculate any new data’s storage target without consulting a central allo-

cator. The Sorrento [93] storage system’s use of consistent hashing [47] most closely resembles

CRUSH, but lacks support for controlled weighting of devices, a well-balanced distribution of

data, and failure domains for improving data safety.

Although the data migration problem has been studied extensively in the context of

systems with explicit allocation maps [5, 6], such approaches have heavy metadata require-

ments that functional approaches like CRUSH avoid. Choy,et al. [18] describe algorithms for

distributing data over disks which move an optimal number of objects as disks are added, but do

not support weighting, replication, or disk removal. Brinkmann,et al. [17] use hash functions

to distribute data to a heterogeneous but static cluster. Brinkmann later describes an improved

algorithm for placing replicas among a weighted set of disks inO(n) time [16]. SCADDAR [34]

addresses the addition and removal of storage, but only supports a constrained subset of repli-

cation strategies. None of these approaches include CRUSH’s flexibility orfailure domains for

improved reliability.

Brinkmannet al. also describe a problem with many placement algorithms—CRUSH

included—in which data is imperfectly distributed in small clusters with heterogeneous device

weights [16]. In such small clusters, the key properties that CRUSH provides are neither signif-

icant nor required (namely, scalability and support for replica separation).
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ANU (adaptive, nonuniform randomization) [108] maps data objects and servers onto

a sparse subset of the unit interval, and dynamically adjusts server allocations in response to

observed load. This bears a strong resemblance to CRUSH’s overload mechanism, although

CRUSH requires an initial weight estimate, and Ceph does not implement ANU’s heuristics

for limiting load thrashing. However, like consistent hashing, ANU maps objects to individual

servers with no support for replication, and further lacks CRUSH’s flexible placement rules,

support for failure domains, or a tunable balance between performanceand stability.

CRUSH most closely resembles the RUSH [41] family of algorithms upon which

it is based. RUSH remains the only existing set of algorithms in the literature that utilizes a

mapping function in place of explicit metadata and supports the efficient addition and removal of

weighted devices. Despite these basic properties, a number of issues makeRUSH an insufficient

solution in practice. For example, like Brinkmann’s algorithm [16], RUSHR biases placement

of certain replicas to certain devices, effectively providing a placementsetinstead of an ordered

list, while RUSHP does not support the efficient removal of devices. CRUSH fully generalizes

the useful elements of RUSHP and RUSHT while resolving previously unaddressed reliability

and replication issues, and offering improved performance and flexibility.

5.2 The CRUSH algorithm

The CRUSH algorithm distributes data objects among storage devices according to

a per-device weight value, approximating a uniform probability distribution.The distribution

is controlled by a hierarchicalcluster maprepresenting the available storage resources and
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composed of the logical elements from which it is built. For example, one might describe

a large installation in terms of rows of server cabinets, cabinets filled with disk shelves, and

shelves filled with storage devices. The data distribution policy is defined in terms ofplacement

rules that specify how many replica targets are chosen from the cluster and what restrictions

are imposed on replica placement. For example, one might specify that three mirrored replicas

are to be placed on devices in different physical cabinets so that they donot share the same

electrical circuit.

Given a single integer input valuex, CRUSH will output an ordered list~Rof n distinct

storage targets. CRUSH utilizes a strong multi-input integer hash function whose inputs include

x, making the mapping completely deterministic and independently calculable using only the

cluster map, placement rules, andx. The distribution is pseudo-random in that there is no

apparent correlation between the resulting output from similar inputs or in theitems stored on

any storage device. I say that CRUSH generates adeclustereddistribution of replicas in that the

set of devices sharing replicas for one item also appears to be independent of all other items.

5.2.1 Hierarchical Cluster Map

The cluster map is composed ofdevicesandbuckets, both of which have numerical

identifiers and weight values associated with them. Buckets can contain any number of devices

or other buckets, allowing them to form interior nodes in a storage hierarchy in which devices

are always at the leaves. Storage devices are assigned weights by the administrator to control

the relative amount of data they are responsible for storing. Although a large system will likely

contain devices with a variety of capacity and performance characteristics, randomized data
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distributions statistically correlate device utilization with workload, such that device load is on

average proportional to the amount of data stored. This results in a one-dimensional placement

metric, weight, which should be derived from the device’s capabilities. Bucket weights are

defined as the sum of the weights of the items they contain.

Buckets can be composed arbitrarily to construct a hierarchy representing available

storage. For example, one might create a cluster map with “shelf” buckets atthe lowest level to

represent sets of identical devices as they are installed, and then combineshelves into “cabinet”

buckets to group together shelves that are installed in the same rack. Cabinets might be further

grouped into “row” or “room” buckets for a large system. Data is placed in the hierarchy by

recursively selecting nested bucket items via a pseudo-random hash-like function. In contrast

to conventional hashing techniques, in which any change in the number of target bins (devices)

results in a massive reshuffling of bin contents, CRUSH is based on four different bucket types,

each with a different selection algorithm to address data movement resulting from the addition

or removal of devices and overall computational complexity.

5.2.2 Replica Placement

CRUSH is designed to distribute data uniformly among weighted devices to maintain

a statistically balanced utilization of storage and device bandwidth resources. The placement

of replicas on storage devices in the hierarchy can also have a critical effect on data safety.

By reflecting the underlying physical organization of the installation, CRUSHcan model—

and thereby address—potential sources of correlated device failures. Typical sources include

physical proximity, a shared power source, and a shared network. Byencoding this information
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into the cluster map, CRUSH placement policies can separate object replicas across different

failure domains while still maintaining the desired distribution. For example, to address the

possibility of concurrent failures, it may be desirable to ensure that data replicas are on devices

in different shelves, racks, power supplies, controllers, and/or physical locations.

In order to accommodate the wide variety of scenarios in which CRUSH might be

used, both in terms of data replication strategies and underlying hardware configurations, CRUSH

definesplacement rulesfor each replication strategy or distribution policy employed that allow

the storage system or administrator to specify exactly how object replicas are placed. For ex-

ample, one might have a rule selecting a pair of targets for 2-way mirroring, one for selecting

three targets in two different data centers for 3-way mirroring, one for RAID-4 over six storage

devices, and so on1.

Each rule consists of a sequence of operations applied to the hierarchy ina simple ex-

ecution environment, presented as pseudocode in Algorithm 1. The integerinput to the CRUSH

function,x, is typically an object name or other identifier, such as an identifier for a group of

objects whose replicas will be placed on the same devices. Thetake(a)operation selects an

item (typically a bucket) within the storage hierarchy and assigns it to the vector~i, which serves

as an input to subsequent operations. Theselect(n,t)operation iterates over each elementi ∈~i,

and choosesn distinct items of typet in the subtree rooted at that point. Storage devices have

a known, fixed type, and each bucket in the system has a type field that is used to distinguish

between classes of buckets (e. g. those representing “rows” and those representing “cabinets”).

For eachi ∈~i, theselect(n,t)call iterates over ther ∈ 1, . . . ,n items requested and recursively

1Although a wide variety of data redundancy mechanisms are possible, for simplicity I will refer to the data
objects being stored asreplicas, without any loss of generality.
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Algorithm 1 CRUSH placement for objectx

1: procedure TAKE(a) ⊲ Put itema in working vector~i
2: ~i ← [a]
3: end procedure

4: procedure SELECT(n, t) ⊲ Selectn items of typet
5: ~o← /0 ⊲ Our output, initially empty
6: for i ∈~i do ⊲ Loop over input~i
7: f ← 0 ⊲ No failures yet
8: for r ← 1,n do ⊲ Loop overn replicas
9: fr ← 0 ⊲ No failures on this replica

10: retry descent← false
11: repeat
12: b← bucket(i) ⊲ Start descent at bucketi
13: retry bucket← false
14: repeat
15: if “first n” then ⊲ See Section 5.2.2.2
16: r ′ ← r + f
17: else
18: r ′ ← r + frn
19: end if
20: o← b.c(r ′,x) ⊲ See Section 5.2.4
21: if type(o) 6= t then
22: b← bucket(o) ⊲ Continue descent
23: retry bucket← true
24: else ifo∈~o or failed(o) or overload(o,x) then
25: fr ← fr +1, f ← f +1
26: if o∈~o and fr < 3 then
27: retry bucket← true ⊲ Retry collisions locally (see Section 5.2.2.1)
28: else
29: retry descent← true ⊲ Otherwise retry descent fromi
30: end if
31: end if
32: until ¬retry bucket
33: until ¬retry descent
34: ~o← [~o,o] ⊲ Add o to output~o
35: end for
36: end for
37: ~i ←~o ⊲ Copy output back into~i
38: end procedure

39: procedure EMIT ⊲ Append working vector~i to result
40: ~R← [~R,~i]
41: end procedure
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Figure 5.1: A partial view of a four-level cluster map hierarchy consisting of rows, cabinets, and
shelves of disks. Bold lines illustrate items selected by eachselectoperation in the placement
rule and fictitious mapping described by Table 5.1.

Action Resulting~i
take(root) root
select(1,row) row2
select(3,cabinet) cab21 cab23 cab24
select(1,disk) disk2107 disk2313 disk2437
emit

Table 5.1: A simple rule that distributes three replicas across three cabinets in the same row.

descends through any intermediate buckets, pseudo-randomly selecting anested item in each

bucket using the functionc(r,x) (defined for each kind of bucket in Section 5.2.4), until it finds

an item of the requested typet. The resultingn|~i| distinct items are placed back into the input~i

and either form the input for a subsequentselect(n,t)or are moved into the result vector with an

emitoperation.

As an example, the rule defined in Table 5.1 begins at the root of the hierarchy in

Figure 5.1 and with the firstselect(1,row)chooses a single bucket of type “row” (it selectsrow2).
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The subsequentselect(3,cabinet)chooses three distinct cabinets nested beneath the previously

selectedrow2 (cab21,cab23,cab24), while the finalselect(1,disk)iterates over the three cabinet

buckets in the input vector and chooses a single disk nested beneath eachof them. The final

result is three disks spread over three cabinets, but all in the same row. This approach thus allows

replicas to be simultaneously separated across and constrained within container types (e. g.

rows, cabinets, shelves), a useful property for both reliability and performance considerations.

Rules consisting of multipletake, emitblocks allow storage targets to be explicitly drawn from

different pools of storage, as might be expected in remote replication scenarios (in which one

replica is stored at a remote site) or tiered installations (e. g. fast, near-line storage and slower,

higher-capacity arrays).

5.2.2.1 Collisions, Failure, and Overload

The select(n,t)operation may traverse many levels of the storage hierarchy in order

to locaten distinct items of the specified typet nested beneath its starting point, a recursive

process partially parameterized byr = 1, . . . ,n, the replica number being chosen. During this

process, CRUSH may reject and reselect items using a modified inputr ′ for three different

reasons: if an item has already been selected in the current set (a collision—theselect(n,t)result

must be distinct), if a device isfailed, or if a device isoverloaded. Failed or overloaded devices

are marked as such in the cluster map, but left in the hierarchy to avoid unnecessary shifting of

data. CRUSH’s selectively diverts a fraction of an overloaded device’s data by pseudo-randomly

rejecting with the probability specified in the cluster map—typically related to its reported over-

utilization. For failed or overloaded devices, CRUSH uniformly redistributesitems across the
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storage cluster by restarting the recursion at the beginning of theselect(n, t) (see Algorithm 1

line 11). In the case of collisions, an alternater ′ is used first at inner levels of the recursion to

attempt a local search (see Algorithm 1 line 14) and avoid skewing the overall data distribution

away from subtrees where collisions are more probable (e. g. where buckets are smaller than

n).

5.2.2.2 Replica Ranks

Parity and erasure coding schemes have slightly different placement requirements

than replication. In primary copy replication schemes, it is often desirable after a failure for

a previous replica target (that already has a copy of the data) to become the new primary. In

such situations, CRUSH can use the “first n” suitable targets by reselectingusing r ′ = r + f ,

where f is the number of failed placement attempts by the currentselect(n,t)(see Algorithm 1

line 16). With parity and erasure coding schemes, however, the rank or position of a storage

device in the CRUSH output is critical because each target stores different bits of the data object.

In particular, if a storage device fails, it should be replaced in CRUSH’s output list~R in place,

such that other devices in the list retain the same rank (i. e. position in~R, see Figure 5.2). In such

cases, CRUSH reselects usingr ′ = r + frn, where fr is the number of failed attempts onr, thus

defining a sequence of candidates for each replica rank that are probabilistically independent of

others’ failures. In contrast, RUSH has no special handling of failed devices; like other existing

hashing distribution functions, it implicitly assumes the use of a “first n” approach to skip over

failed devices in the result, making it unwieldy for parity schemes.
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Figure 5.2: Reselection behavior ofselect(6,disk)when devicer = 2 (b) is rejected, where the
boxes contain the CRUSH output~R of n = 6 devices numbered by rank. The left shows the
“first n” approach in which device ranks of existing devices (c,d,e, f ) may shift. On the right,
each rank has a probabilistically independent sequence of potential targets; herefr = 1, and
r ′ = r + frn = 8 (deviceh).

5.2.2.3 Force-feeding

In a variety of environments it is desirable to specify the placement of the first replica.

For example, in distributed computing environments in which each server performs both com-

putation and storage tasks, network utilization can be significantly lowered if the first replica is

stored locally. To enable such behavior, CRUSH allows you to “force-feed” a specific first de-

vice to the placement algorithm, while still maintaining all other placement constraintsimposed

by the placement rule. (Note that although force feeding is relatively straightforward, it is not

included in Algorithm 1.)

This is accomplished by consulting the device hierarchy that the placement rule is

utilizing (i. e. that nested beneath the initialtake), and inferring the choices that would be made

by eachselectto ultimately choose the force fed item. Each select initially chooses the inferred

or force fed item, and then proceeds pseudo-randomly for any additional results, producing a
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distinct result list as before. This ensures that constraints imposed by theplacement rule (e. g.

separation of replicas within the hierarchy) are maintained, despite an explicit choice of the

initial result.

Force feeding requires that each device only occurs once in the givensubtree of the

hierarchy in order to unambiguously determine the parent for each node,although the rest of

the CRUSH algorithm has no such restriction. This would only be significant for unusual hier-

archies not considered here.

5.2.3 Map Changes and Data Movement

A critical element of data distribution in a large file system is the response to the

addition or removal of storage resources. CRUSH maintains a uniform distribution of data

and workload at all times in order to avoid load asymmetries and the related underutilization of

available resources. When an individual device fails, CRUSH flags the device but leaves it in the

hierarchy, where it will be rejected and its contents uniformly redistributed by the placement

algorithm (see Section 5.2.2.1). Such cluster map changes result in an optimal(minimum)

fraction,wf ailed/W (whereW is the total weight of all devices), of total data to be remapped to

new storage targets because only data on the failed device is moved.

The situation is more complex when the cluster hierarchy is modified, as with the

addition or removal of storage resources. The CRUSH mapping process, which uses the cluster

map as a weighted hierarchical decision tree, can result in additional data movement beyond

the theoretical optimum of∆w
W . At each level of the hierarchy, when a shift in relative subtree

weights alters the distribution, some data objects must move from from subtreeswith decreased
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Figure 5.3: Data movement in a binary hierarchy due to a node addition and the subsequent
weight changes.

weight to those with increased weight. Because the pseudo-random placement decision at each

node in the hierarchy is statistically independent, data moving into a subtree is uniformly redis-

tributed beneath that point, and does not necessarily get remapped to the leaf item ultimately

responsible for the weight change. Only at subsequent (deeper) levels of the placement process

does (often different) data get shifted to maintain the correct overall relative distributions. This

general effect is illustrated in the case of a binary hierarchy in Figure 5.3.

The amount of data movement in a hierarchy has a lower bound of∆w
W , the fraction of

data that would reside on a newly added device with weight∆w. Data movement increases with

the heighth of the hierarchy, with a conservative asymptotic upper bound ofh∆w
W . The amount

of movement approaches this upper bound when∆w is small relative toW, because data objects

moving into a subtree at each step of the recursion have a very low probability of being mapped

to an item with a small relative weight.

5.2.4 Bucket Types

Generally speaking, CRUSH is designed to reconcile two competing goals: efficiency

and scalability of the mapping algorithm, and minimal data migration to restore a balanced dis-
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Action Uniform List Tree Straw
Speed O(1) O(n) O(log n) O(n)
Additions poor optimal good optimal
Removals poor poor good optimal

Table 5.2: Summary of mapping speed and data reorganization efficiency of different bucket
types when items are added to or removed from a bucket.

tribution when the cluster changes due to the addition or removal of devices.To this end,

CRUSH defines four different kinds of buckets to represent internal(non-leaf) nodes in the

cluster hierarchy:uniform buckets, list buckets, tree buckets, andstraw buckets. Each bucket

type is based on a different internal data structure and utilizes a different function c(r,x) for

pseudo-randomly choosing nested items during the replica placement process, representing a

different tradeoff between computation and reorganization efficiency.Uniform buckets are re-

stricted in that they must contain items that are all of the same weight (much like a conventional

hash-based distribution function), while the other bucket types can contain a mix of items with

any combination of weights. These differences are summarized in Table 5.2.

5.2.4.1 Uniform Buckets

Devices are rarely added individually in a large system. Instead, new storage is typ-

ically deployed in blocks of identical devices, often as an additional shelf ina server rack or

perhaps an entire cabinet. Devices reaching their end of life are often similarly decommissioned

as a set (individual failures aside), making it natural to treat them as a unit. CRUSH uniform

buckets are used to represent an identical set of devices in such circumstances. The key ad-

vantage in doing so is performance related: CRUSH can map replicas into uniform buckets in
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constant time. In cases where the uniformity restrictions are not appropriate, other bucket types

can be used.

Given a CRUSH input value ofx and a replica numberr, we choose an item from

a uniform bucket of sizem using the functionc(r,x) = (hash(x) + rp) modm, wherep is a

randomly (but deterministically) chosen prime number greater thanm. For anyr ≤ m we can

show that we will always select a distinct item using a few simple number theorylemmas.2 For

r > m this guarantee no longer holds, meaning two different replicasr with the same inputx

may resolve to the same item. In practice, this means nothing more than a non-zeroprobability

of collisions and subsequent backtracking by the placement algorithm (see Section 5.2.2.1).

If the size of a uniform bucket changes, there is a complete reshuffling of data between

devices, much like conventional hash-based distribution strategies.

5.2.4.2 List Buckets

List buckets structure their contents as a linked list, and can contain items with arbi-

trary weights. To place a replica, CRUSH begins at the head of the list with themost recently

added item and compares its weight to the sum of all remaining items’ weights. Depending on

the value of hash(x, r, item), either the current item is chosen with the appropriate probability, or

the process continues recursively down the list. This approach, derived from RUSHP , recasts

the placement question into that of “most recently added item, or older items?” This is a natural

and intuitive choice for an expanding cluster: either an object is relocatedto the newest device

2The Prime Number Theorem for Arithmetic Progressions [36] can be used to further show that this function will
distribute replicas of objectx in mφ(m) different arrangements, and that each arrangement is equally likely.φ(·) is
the Euler Totient function.
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with some appropriate probability, or it remains on the older devices as before. The result is

optimal data migration when items are added to the bucket. Items removed from the middle or

tail of the list, however, can result in a significant amount of unnecessary movement, making

list buckets most suitable for circumstances in which they never (or very rarely) shrink.

The RUSHP algorithm is approximately equivalent to a two-level CRUSH hierarchy

consisting of a single list bucket containing many uniform buckets. Its fixedcluster represen-

tation precludes the use for placement rules or CRUSH failure domains for controlling data

placement for enhanced reliability.

5.2.4.3 Tree Buckets

Like any linked list data structure, list buckets are efficient for small sets of items but

may not be appropriate for large sets, where theirO(n) running time may be excessive. Tree

buckets, derived from RUSHT , address this problem by storing their items in a binary tree. This

reduces the placement time toO(logn), making them suitable for managing much larger sets of

devices or nested buckets. RUSHT is equivalent to a two-level CRUSH hierarchy consisting of

a single tree bucket containing many uniform buckets.

Tree buckets are structured as a weighted binary search tree with items at the leaves.

Each interior node knows the total weight of its left and right subtrees andis labeled according

to a fixed strategy (described below). In order to select an item within a bucket, CRUSH starts

at the root of the tree and calculates the hash of the input keyx, replica numberr, the bucket

identifier, and the label at the current tree node (initially the root). The result is compared to

the weight ratio of the left and right subtrees to decide which child node to visit next. This
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Figure 5.4: Node labeling strategy used for the binary tree comprising each tree bucket.

process is repeated until a leaf node is reached, at which point the associated item in the bucket

is chosen. Only logn hashes and node comparisons are needed to locate an item.

The bucket’s binary tree nodes are labeled with binary values using a simple, fixed

strategy designed to avoid label changes when the tree grows or shrinks. The leftmost leaf in

the tree is always labeled “1.” Each time the tree is expanded, the old root becomes the new

root’s left child, and the new root node is labeled with the old root’s label shifted one bit to

the left (1, 10, 100, etc.). The labels for the right side of the tree mirror those on the left side

except with a “1” prepended to each value. A labeled binary tree with six leaves is shown in

Figure 5.4. This strategy ensures that as new items are added to (or removed from) the bucket

and the tree grows (or shrinks), the path taken through the binary tree for any existing leaf

item only changes by adding (or removing) additional nodes at the root, atthe beginning of the

placement decision tree. Once an object is placed in a particular subtree, itsfinal mapping will

depend only on the weights and node labels within that subtree and will not change as long

as that subtree’s items remain fixed. Although the hierarchical decision treeintroduces some

additional data migration between nested items, this strategy keeps movement to a reasonable

level, while offering efficient mapping even for very large buckets.
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5.2.4.4 Straw Buckets

List and tree buckets are structured such that a limited number of hash valuesneed to

be calculated and compared to weights in order to select a bucket item. In doing so, they divide

and conquer in a way that either gives certain items precedence (e. g. those at the beginning

of a list) or obviates the need to consider entire subtrees of items at all. That improves the

performance of the replica placement process, but can also introduce suboptimal reorganization

behavior when the contents of a bucket change due an addition, removal,or re-weighting of an

item.

The straw bucket type allows all items to fairly “compete” against each other for

replica placement through a process analogous to a draw of straws. To place a replica, a straw

of random length is drawn for each item in the bucket. The item with the longeststraw wins.

The length of each straw is initially a value in a fixed range, based on a hash of the CRUSH input

x, replica numberr, and bucket itemi. Each straw length is scaled by a factorf (wi) based on

the item’s weight so that heavily weighted items are more likely to win the draw,i. e. c(r,x) =

maxi ( f (wi)hash(x, r, i)). Although this process is almost twice as slow (on average) than a list

bucket and even slower than a tree bucket (which scales logarithmically),straw buckets result

in optimal data movement between nested items when modified.

The scaling factorf (wi) for each bucket item is precalculated when the bucket is first

created or modified, using the iterative procedure in Algorithm 23. Although the pseudocode is

included here for completeness, its derivation was based on a combination of geometric analysis

3Note that the first portion of the pseudocode is simply creating a sorted mapping reverseby weight using an
insertion sort.
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and trial and error, and is neither concise nor elegant (I would not be surprised to learn that there

is an equivalent and trivial closed form). The basic intuition is that items with identical weights

will have the same straw scaling value. We sort by weight, and start by giving the least-weighted

items a straw multiplierf (wi) of one. As each successively larger item weight group is “added,”

its straw multiplerf (wi) is chosen based on the desired probabilitypbelow of choosing a shorter

straw versus the next longer straw, where we consider that items with larger straw multipliers

may still result in shorter straw lengths. That is,wbelow andwnext are a product item weight and

the number of items with equal or larger weights, andpbelow= wbelow
wbelow+wnext

.

5.2.4.5 Bucket Discussion

The choice of bucket type can be guided based on expected cluster growth patterns

to trade mapping function computation for data movement efficiency where it is appropriate to

do so. When buckets are expected to be fixed (e. g.a shelf of identical disks), uniform buckets

are fastest. If a bucket is only expected to expand, list buckets provideoptimal data movement

when new items are added at the head of the list. This allows CRUSH to divert exactly as much

data to the new device as is appropriate, without any shuffle between otherbucket items. The

downside isO(n) mapping speed and extra data movement when older items are removed or

reweighted. In circumstances where removal is expected and reorganization efficiency is critical

(e. g.near the root of the storage hierarchy), straw buckets provide optimal migration behavior

between subtrees. Tree buckets are an all around compromise, providing excellent performance

and decent reorganization efficiency.
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Algorithm 2 Function to calculate straw scaling factorf (wi) from the bucket item weightswi .

procedure CALC STRAW WEIGHTS(~w, ~f ) ⊲ Calclate~f from ~w
size← length(~w)
reverse[0] = 0 ⊲ Determine sort order of~w with an insertion sort.
for i = 1 tosize−1 do

for j = 0 to i −1 do
if w[i] < w[reverse[ j]] then

for k = i down to j +1 do ⊲ Inserti here
reverse[k] = reverse[k−1]

end for
reverse[ j] = i
break

end if
end for
if j = i then

reverse[i] = i ⊲ Add i at end
end if

end for
straw← 1 ⊲ Initial straw length is 1
numle f t← size
wbelow← 0
lastw← 0
i ← 0
while i < sizedo

f [reverse[i]] ← straw ⊲ Set this item’s straw multiplier
i ← i +1
if i = sizethen

break
end if
if w[reverse[i]] 6= w[reverse[i −1]] then ⊲ Different weight than previous item?

wbelow← (wbelow+w[reverse[i −1]]− lastw)×numle f t
for j = i to size− do ⊲ Adjust count of items with greater weight

if w[reverse[ j]] == w[reverse[i]] then
numle f t← numle f t−1

else
break

end if
end for
wnext← numle f t× (w[reverse[i]]−w[reverse[i −1]])
pbelow← wbelow

wbelow+wnext

straw← straw× 1
pbelow

1
numle f t

lastw= w[reverse[i −1]]
end if

end while
end procedure
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5.3 Evaluation

CRUSH is based on a wide variety of design goals including a balanced, weighted

distribution among heterogeneous storage devices, minimal data movement dueto the addition

or removal of storage (including individual disk failures), improved system reliability through

the separation of replicas across failure domains, and a flexible cluster description and rule sys-

tem for describing available storage and distributing data. I evaluate each of these behaviors

under expected CRUSH configurations relative to RUSHP - and RUSHT -style clusters by sim-

ulating the allocation of objects to devices and examining the resulting distribution.RUSHP

and RUSHT are generalized by a two-level CRUSH hierarchy with a single list or tree bucket

(respectively) containing many uniform buckets. Although RUSH’s fixedcluster representation

precludes the use of placement rules or the separation of replicas acrossfailure domains (which

CRUSH uses to improve data safety), I consider its performance and data migration behavior.

5.3.1 Data Distribution

CRUSH’s data distribution should appear random—uncorrelated to object identifiers

x or storage targets—and result in a balanced distribution across devices with equal weight. I

empirically measured the distribution of objects across devices contained in a variety of bucket

types and compared the variance in device utilization to the binomial probability distribution,

the theoretical behavior I would expect from a perfectly uniform random process. When dis-

tributing n objects with probabilitypi = wi
W of placing each object on a given devicei, the

expected device utilization predicted by the corresponding binomialb(n, p) is µ = np with a
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standard deviation ofσ =
√

np(1− p). In a large system with many devices, we can approxi-

mate 1− p≃ 1 such that the standard deviation isσ ≃√µ—that is, utilizations are most even

when the number of data objects is large.4 As expected, I found that the CRUSH distribution

consistently matched the mean and variance of a binomial for both homogeneous clusters and

clusters with mixed device weights.

5.3.1.1 Overload Protection

Although CRUSH achieves good balancing (a low variance in device utilization) for

large numbers of objects, as in any stochastic process this translates into a non-zero probability

that the allocation on any particular device will be significantly larger than the mean. Unlike

existing probabilistic mapping algorithms (including RUSH ), CRUSH includes a per-device

overload correction mechanism that can redistribute any fraction of a device’s data. This can be

used to scale back a device’s allocation proportional to its over-utilization when it is in danger

of overfilling, selectively “leveling off” overfilled devices. When distributing data over a 1000-

device cluster at 99% capacity, I found that CRUSH mapping execution times increase by less

than 20% despite overload adjustments on 47% of the devices, and that the variance decreased

by a factor of four (as expected).

5.3.1.2 Variance and Partial Failure

Prior research [84] has shown that randomized data distribution offersreal-world sys-

tem performance comparable to (but slightly slower than) that of careful data striping. In my

4The binomial distribution is approximately Gaussian when there are many objects (i. e. whenn is large).
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Devices Devices
Usage Overfilled Adjusted Time σ

50% 0 0 1.000 .100
70% .7% 1.9% 1.003 .098
75% 1.6% 3.8% 1.016 .095
80% 2.9% 6.4% 1.022 .093
85% 7.7% 12.9% 1.035 .081
90% 15.2% 22.1% 1.040 .066
95% 28.6% 35.4% 1.092 .041
97% 38.3% 41.4% 1.161 .029
99% 44.5% 46.3% 1.163 .025

Table 5.3: As the total utilization of available storage approaches capacity, the number of de-
vices that would otherwise overfill and that require adjustment increases. CRUSH computation
increases slightly while decreasing variance.

own performance tests of CRUSH in the context of Ceph [100], I found that randomizing ob-

ject placement resulted in an approximately 5% penalty in write performance due to variance

in the OSD workloads, related in turn to the level of variation in OSD utilizations. In practice,

however, such variance is primarily only relevant for homogeneous workloads (usually writes)

where a careful striping strategy is effective. More often, workloadsare mixed and already ap-

pear random when they reach the disk (or at least uncorrelated to on-disk layout), resulting in

a similar variance in device workloads and performance (despite carefullayout), and similarly

reduced aggregate throughput. I find that CRUSH’s lack of metadata androbust distribution in

the face of any potential workload far outweigh the small performance penalty under a small

set of workloads.

This analysis assumes that device capabilities are more or less static over time. Ex-

perience with real systems suggests, however, that performance in distributed storage systems

is often dragged down by a small number of slow, overloaded, fragmented, or otherwise poorly
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performing devices. Traditional, explicit allocation schemes can manually avoid such prob-

lem devices, while hash-like distribution functions typically cannot. CRUSH allows degenerate

devices to be treated as a “partial failure” using the existing overload correction mechanism, di-

verting an appropriate amount of data and workload to avoiding such performance bottlenecks

and correct workload imbalance over time.

Fine-grained load balancing by the storage system can further mitigate device work-

load variance by distributing the read workload over data replicas, as demonstrated by the D-

SPTF algorithm [62]; such approaches, although complementary, fall outside the scope of the

CRUSH mapping function and this paper.

5.3.2 Reorganization and Data Movement

I evaluate the data movement caused by the addition or removal of storage when using

both CRUSH and RUSH on a cluster of 7290 devices. The CRUSH clusters are four levels deep:

nine rows of nine cabinets of nine shelves of ten storage devices, for a total of 7290 devices.

RUSHT and RUSHP are equivalent to a two-level CRUSH map consisting of a single tree

or list bucket (respectively) containing 729 uniform buckets with 10 devices each. The results

are compared to the theoretically optimal amount of movementmoptimal =
∆w
W , where∆w is

the combined weight of the storage devices added or removed andW is the total weight of the

system. Doubling system capacity, for instance, would require exactly halfof the existing data

to move to new devices under an optimal reorganization.

Figure 5.5 shows the relative reorganization efficiency in terms of themovement factor

mactual/moptimal, where 1 represents an optimal number of objects moved and larger valuesmean
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Figure 5.5: Efficiency of reorganization after adding or removing storage devices two levels
deep into a four level, 7290 device CRUSH cluster hierarchy, versus RUSHP and RUSHT . 1
is optimal.

additional movement. TheX axis is the number of OSDs added or removed and theY axis is

the movement factor plotted on a log scale. In all cases, larger weight changes (relative to

the total system) result in a more efficient reorganization. RUSHP (a single, large list bucket)

dominated the extremes, with the least movement (optimal) for additions and most movement

for removals (at a heavy performance penalty, see Section 5.3.3 below).A CRUSH multi-level

hierarchy of list (for additions only) or straw buckets had the next leastmovement. CRUSH

with tree buckets was slightly less efficient, but did almost 25% better than plain RUSHT (due

to the slightly imbalanced 9-item binary trees in each tree bucket). Removals from a CRUSH

hierarchy built with list buckets did poorly, as expected (see Section 5.2.3).

Figure 5.6 shows the reorganization efficiency of different bucket types (in isolation)

when nested items are added or removed. The movement factor in a modified tree bucket is

bounded by logn, the depth of its binary tree. Adding items to straw and list buckets is approx-

imately optimal. Uniform bucket modifications result in a total reshuffle of data.Modifications
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Figure 5.6: Efficiency of reorganization after adding items to different bucket types. 1 is op-
timal. Straw and list buckets are normally optimal, although removing items from the tailof a
list bucket induces worst case behavior. Tree bucket changes arebounded by the logarithm of
the bucket size.

to the tail of a list (e. g. removal of the oldest storage) similarly induce data movement propor-

tional to the bucket size. Despite certain limitations, list buckets may be appropriate in places

within an overall storage hierarchy where removals are rare and at a scale where the perfor-

mance impact will be minimal. A hybrid approach combining uniform, list, tree, and straw

buckets can minimize data movement under the most common reorganization scenarios while

still maintaining good mapping performance.

5.3.3 Algorithm Performance

Calculating a CRUSH mapping is designed to be fast—O(logn) for a cluster withn

OSDs—so that devices can quickly locate any object or reevaluate the proper storage targets for

the objects that they already store after a cluster map change. I examine CRUSH’s performance

relative to RUSHP and RUSHT over a million mappings into clusters of different sizes. Fig-
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ure 5.7 shows the average time (in microseconds) to map a set of replicas into aCRUSH cluster

composed entirely of 8-item tree and uniform buckets (the depth of the hierarchy is varied) ver-

sus RUSH ’s fixed two-level hierarchy. TheX axis is the number of devices in the system, and is

plotted on a log scale such that it corresponds to the depth of the storage hierarchy. CRUSH per-

formance is logarithmic with respect to the number of devices. RUSHT edges out CRUSH with

tree buckets due to slightly simpler code complexity, followed closely by list and straw buckets.

RUSHP scales linearly in this test (taking more than 25 times longer than CRUSH for 32768

devices), although in practical situations where the size of newly deployeddisks increases ex-

ponentially over time one can expect slightly improved sub-linear scaling [41]. These tests were

conducted with a 2.8 GHz Pentium 4, with overall mapping times in the tens of microseconds.

The efficiency of CRUSH depends upon the depth of the storage hierarchy and on the

types of buckets from which it is built. Figure 5.8 compares the time (Y) required forc(r,x) to

select a single replica from each bucket type as a function of the size of the bucket (X). At a
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Figure 5.8: Low-level speed of mapping replicas into individual CRUSH buckets versus bucket
size. Uniform buckets take constant time, tree buckets take logarithmic time, andlist and straw
buckets take linear time.

high level, CRUSH scales asO(logn)—linearly with the hierarchy depth—provided individual

buckets that may beO(n) (list and straw buckets scale linearly) do not exceed a fixed maximum

size. When and where individual bucket types should be used depends on the expected number

of additions, removals, or re-weightings. List buckets offer a slight performance advantage over

straw buckets, although when removals are possible one can expect excessive data shuffling.

Tree buckets are a good choice for very large or commonly modified buckets, with decent

computation and reorganization costs.

Central to CRUSH’s performance—both the execution time and the quality of the

results—is the integer hash function used. Pseudo-random values are calculated using a mul-

tiple input integer hash function based on Jenkin’s 32-bit hashmix [45]. In its present form,

approximately 45% of the time spent in the CRUSH mapping function is spent hashing val-

ues, making the hash key to both overall speed and distribution quality and a ripe target for

optimization.
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5.3.3.1 Negligent Aging

CRUSH leaves failed devices in place in the storage hierarchy both because failure

is typically a temporary condition (failed disks are usually replaced) and because it avoids in-

efficient data reorganization. If a storage system ages in neglect, the number of devices that

are failed but not replaced may become significant. Although CRUSH will redistribute data

to non-failed devices, it does so at a small performance penalty due to a higher probability of

backtracking in the placement algorithm. I evaluated the mapping speed for a 1,000 device

cluster while varying the percentage of devices marked as failed. For the relatively extreme

failure scenario in which half of all devices are dead, the mapping calculation time increases

by 71%. (Such a situation would likely be overshadowed by heavily degraded I/O performance

as each devices’ workload doubles.) Variance in device utilization increases under such cir-

cumstances, with a 17% higher standard deviation at 50% of devices failed and a 50% higher

standard deviation at 80% failed.

5.3.4 Reliability

Data safety is of critical importance in large storage systems, where the largenumber

of devices makes hardware failure the rule rather than the exception. Randomized distribution

strategies like CRUSH that decluster replication are of particular interest because they expand

the number of peers with which any given device shares data. This has twocompeting and

(generally speaking) opposing effects. First, recovery after a failure can proceed in parallel

because smaller bits of replicated data are spread across a larger set ofpeers, reducing recovery

times and shrinking the window of vulnerability to additional failures. Second,a larger peer
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group means an increased probability of a coincident second failure losing shared data. With

2-way mirroring these two factors cancel each other out, while overall data safety with more

than two replicas increases with declustering [111].

However, a critical issue with multiple failures is that, in general, one cannot expect

them to be independent—in many cases a single event like a power failure or aphysical dis-

turbance will affect multiple devices, and the larger peer groups associated with declustered

replication greatly increase the risk of data loss. CRUSH’s separation of replicas across user-

defined failure domains (which does not exist with RUSH or existing hash-based schemes) is

specifically designed to prevent concurrent, correlated failures fromcausing data loss. Although

it is clear that the risk is reduced, it is difficult to quantify the magnitude of the improvement in

overall system reliability in the absence of a specific storage cluster configuration and associ-

ated historical failure data to study. Although I hope to perform such a study in the future, it is

beyond the scope of this thesis.

5.4 Future Work

Because the CRUSH placement algorithm is designed to preserve the basic properties

of the mapping regardless of individual bucket properties, existing placement algorithms for

non-replicated data can easily be supported as new bucket types. In particular, we plan to

implement a consistent hashing bucket type, as it offers attractive run-timefor large buckets

(usuallyO(1)) with reasonable stability properties.

The primitive rule structure currently used by CRUSH is just complex enoughto
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support the data distribution policies I currently envision for Ceph. Other systems may have

specific needs that can be met with a more powerful rule structure.

Although data safety concerns related to coincident failures were the primary motiva-

tion for designing CRUSH, study of real system failures is needed to determine their character

and frequency before Markov or other quantitative models can used to evaluate their precise

effect on a system’s mean time to data loss (MTTDL).

CRUSH’s performance is highly dependent on a suitably strong multi-input integer

hash function. Because it simultaneously affects both algorithmic correctness—the quality of

the resulting distribution—and speed, investigation into faster hashing techniques that are suffi-

ciently strong for CRUSH is warranted.

Randomized data distributions statistically correlate device utilization with workload,

reducing device performance and capacity characteristics to a one-dimensional weight metric. I

have conducted some preliminary investigation into overlaying multiple CRUSH mappings onto

the same set of devices to facilitate distribution of data in different “tiers,” each with different

bandwidth versus storage requirements. Further investigation of the approach is necessary to

determine its feasibility.

5.5 Conclusions

Distributed storage systems present a distinct set of scalability challenges for data

placement. CRUSH meets these challenges by casting data placement as a pseudo-random

mapping function, eliminating the conventional need for allocation metadata and instead dis-
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tributing data based on a weighted hierarchy describing available storage.The structure of the

cluster map hierarchy can reflect the underlying physical organization and infrastructure of an

installation, such as the composition of storage devices into shelves, cabinets, and rows in a data

center, enabling custom placement rules that define a broad class of policies to separate object

replicas into different user-defined failure domains (with, say, independent power and network

infrastructure). In doing so, CRUSH can mitigate the vulnerability to correlated device failures

typical of existing pseudo-random systems with declustered replication. CRUSH also addresses

the risk of device overfilling inherent in stochastic approaches by selectively diverting data from

overfilled devices, with minimal computational cost.

CRUSH accomplishes all of this in an exceedingly efficient fashion, both in terms of

the computational efficiency and the required metadata. Mapping calculationshaveO(logn)

running time, requiring only tens of microseconds to execute with thousands of devices. This

robust combination of efficiency, reliability and flexibility makes CRUSH an appealing choice

for large-scale distributed storage systems.
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Chapter 6

Distributed Object Storage

At the petabyte scale, storage systems are necessarily dynamic: they are built incre-

mentally, they grow and contract with the deployment of new storage and decommissioning

of old devices, devices fail and recover on a continuous basis, and large amounts of data are

created and destroyed. Effectively maintaining proper levels of replication and a balanced dis-

tribution of data at scale challenges conventional approaches to storagemanagement that rely

on centralized controllers and allocation tables.

RADOS is a Reliable, Autonomic Distributed Object Store that provides excellent

performance and reliability while scaling to many thousands of storage devices. RADOS fa-

cilitates an evolving, balanced distribution of data and workload across a dynamic and hetero-

geneous storage cluster while providing applications with the illusion of a singlelogical object

store with well-defined safety semantics and strong consistency guarantees. Metadata bottle-

necks associated with data layout and storage allocation are eliminated through the use of a

compactcluster mapthat describes cluster state and data layout in terms ofplacement groups.
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In Ceph, we use a data distributionfunction (see Chapter 5) to specify this layout, although

other methods (including an explicit map) are possible. RADOS facilitates scalability, efficient

and consistent data access, and seamless adaptation to cluster changes through a protocol that

efficiently and safely distributes map changes to OSDs and clients utilizing the storage cluster.

Replication, failure detection, and failure recovery operations are managed by intel-

ligent OSDs, allowing the system to function with minimal oversight while scaling to many

petabytes. A special-purpose object file system called EBOFS (described in Chapter 7) pro-

vides the necessary interface and safety semantics for low-level objectstorage with excellent

performance.

Although a broad range of existing systems implement various forms of data repli-

cation, it is the careful use of the cluster map that allows RADOS to provide its unique com-

bination of scalability, performance, and consistent data access in a cluster environment. Most

significantly, clients holding a copy of the map can access data without consulting a centralized

object directory or metadata server, and failure detection and recoveryare performed in parallel

by OSDs with minimal oversight.

6.1 Overview

A RADOS cluster consists of a large collection of OSDs and a small group of mon-

itors responsible for managing OSD cluster membership (Figure 6.1). Each OSD includes a

CPU, some volatile RAM, a network interface, and a locally attached disk drive or RAID. Mon-

itors require only a small amount of disk space.
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Figure 6.1: A cluster of many thousands of OSDs store all objects in the system. A small,
tightly coupled cluster of monitors collectively manages the cluster map that describes the cur-
rent cluster composition and the distribution of data. Each client instance exposes a simple
storage interface to applications.

A client running on each host computer exposes an asynchronous I/O interface to

applications utilizing the system, while hiding all of the complexity related to the dynamicand

distributed nature of the storage cluster. This is exemplified by the read interface, which looks

like

read(oid, offset, length, buffer, onfinish),

whereoid is an object identifier (currently 128 bits),offsetand length specify a byte range

within the object, andonfinishidentifies a callback to notify the application of completion. The

client conceals the details of the physical location of the object, messages exchanged, and any

failure scenarios: as long as the cluster is sufficiently available, the operation will eventually

complete.

A critical challenge for large-scale distributed systems is reliability: as the number

of storage devices scales to petabytes and beyond, the likelihood of device failure and data

loss using conventional reliability mechanisms increases to unacceptable levels [112]. Our data
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safety model is guided by the observation that, beyond the basic limitations imposed by the finite

amounts of RAM in most systems, there are two primary reasons why applications store data.

First, to make the data available to other parties; ordinarily this should to happenas quickly

as possible to facilitate efficient data sharing and synchronization betweencooperating clients.

Second, for safety or durability: to know that the data will survive device, power, or other

infrastructure failures. However, strong safety typically comes at a highcost: synchronous disk

writes and mechanisms like file system journals incur additional latencies that degrade system

performance.

For this reason, RADOS disassociatesserializationfrom safetyat all levels of the

architecture, while providingstrong consistencysemantics to applications. That is, read and

write operations logically occur in some sequential order, and completed writeoperations are

reflected by subsequent read operations. Considering serialization (ordering) and safety inde-

pendently allows RADOS to provide excellent performance without compromising consistency

and safety. As a result, the client write interface differs somewhat from convention:

write (oid, offset, length, buffer, onack, oncommit),

where theonackcallback indicates that the update is visible to subsequent reads (e. g.by other

clients), andoncommitindicates that it is safely committed to disk. More specifically, although

updates are atomic in all circumstances,ack is a promise that strong consistency semantics

(ordering, in particular) will be preserved, provided the client does not crash before acommit

is received (clients may need to be able to replay any updates for which theydid not receive a

commit).

Although commit notification is provided to the application via a callback, it can
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safely be (and is usually) ignored. Similarly, although the client process must survive long

enough to see a commit to ensure strong consistency is maintained, a client failure typically

means a failure of the application as well, in which case update ordering semantics are usu-

ally moot. Of course, clients requiring strong safety can simply ignore theack and receive

performance comparable to systems based on synchronous writes.

RADOS provides excellent performance, reliability, and scalability via threekey de-

sign features.

• The distribution of data and cluster state are managed by manipulating a compact

cluster map. The map includes a compact hierarchical description of the devices partic-

ipating in the cluster that is used by CRUSH, a globally known mapping function that

maintains a balanced pseudo-random distribution of objects while taking special care to

maintain data safety. This provides all parties—clients and storage devices alike—with

complete knowledge of the distribution of data: object locations are calculatedwhen

needed, without any need to consult a centralized object directory. Instead, a small,

tightly coupled cluster ofmonitorsare collectively responsible for managing the map,

and through it, the cluster.

• Synchronization is disassociated from safetyin the update protocol. This facilitates ef-

ficient concurrent access to the same objects, while still providing strong safety semantics

when applications require it.

• RADOS leverages device intelligence to distribute data replication, failure detection,

failure recovery, and data migration. OSDs accomplish this distributed management
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by observing cluster map differences among peers and following a peering algorithm to

maintain consistency and the proper distribution and replication of data. Updates are

applied using a combination of primary-copy replication, chain replication [96], and a

hybrid scheme in order to minimize update latency while providing strong consistency

and data safety semantics. Clients are spared most of the complexity surrounding data

replication in a dynamic environment with an evolving data distribution.

I begin by describing the distribution of data and management of the cluster mapin

Section 6.2. Section 6.3 describes the replication of objects, the reliable processing of object

reads and updates, and distributed failure recovery. I also discuss client participation in recovery,

as well as the ObjectCacher module, which facilitates both efficient client operation and locking

for atomic multi-object operations. I evaluate performance and scalability in Section 6.4.

6.2 Distributed Object Storage

RADOS achieves excellent scalability by eliminating the controllers and gateway

servers present in most storage architectures. Instead, clients are given direct access to storage

devices. This is enabled by CRUSH, which provides clients and OSDs with complete knowl-

edge of the current data distribution. When device failures or cluster expansion require a change

in the distribution of data, OSDs communicate amongst themselves to realize that distribution,

without any need for controller oversight.

The RADOS cluster is managed exclusively through manipulation of thecluster map,

a small data structure that describes what OSDs are participating in the storage cluster and
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Figure 6.2: Objects are grouped intoplacement groups(PGs), and distributed to OSDs via
CRUSH, a specialized replica placement function. Failed OSDs (e. g.osd1) are filtered out of
the final mapping.

how data is mapped onto those devices. A small cluster of highly-reliablemonitorsare jointly

responsible for maintaining the map and seeing that OSDs learn about clusterchanges. Because

the cluster map is small, well-known, and completely specifies the data distribution,clients are

able to treat the entire storage cluster (potentially tens of thousands of nodes) as a single logical

object store.

6.2.1 Data Placement

RADOS employs a data distribution policy in which objects are pseudo-randomlyas-

signed to devices. When new storage is added, a random subsample of existing data is migrated

to new devices to restore balance. This strategy is robust in that it maintains aprobabilistically

balanced distribution that, on average, keeps all devices similarly loaded, allowing the system

to perform well under any potential workload [84]. Most importantly, dataplacement takes the

form of a pseudo-random function thatcalculatesthe proper location of objects; no large or

cumbersome centralized allocation table is needed.
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Each object stored by the system is first mapped into aplacement group(PG), a

logical collection of objects that are replicated by the same set of devices, as with FaRM [112].

Each object’s PG is determined by a hash of the object nameo, the desired level of replication

r, and a bit maskm that controls the total number of placement groups in the system. That is,

pgid = (r,hash(o)&m), where & is a bit-wise AND and the maskm= 2k−1, constraining the

number of PGs by a power of two.

As the cluster scales, it is periodically necessary to adjust the total number of place-

ment groups. During such adjustments, PG contents can be split in two by adding a bit tom.

However, to avoid a massive split from simultaneously affecting all placement groups in the

system—resulting in a massive reshuffling of half of all data—in practice we replace them

mask with the stablemod(x,n,m) function, wheren&m= n andn&m̄= 0 (where the bar indi-

cates a bit-wise NOT). That is,pgid = (r,stablemod(hash(o),n,m)). This similarly constrains

the range ofpgid while allowingn to beanynumber of PGs—not just a power of two. Ifx&m

is less thann, we proceed as before. Otherwise, stablemod(x,n,m) returnsx&(m≫ 1) (see

Algorithm 3). This provides a “smooth” transition between bit masksm, such that PG splits can

be spread over time.

Algorithm 3 Function to constrain the number of PGs. Note thatm= 2k −1, n&m= n, and
n&m̄= 0.
1: procedure STABLEMOD(x,n,m) ⊲ Choose between maskm andm≫ 1
2: if x&m< n then
3: returnx&m ⊲ Use larger mask.
4: else
5: returnx&(m≫ 1) ⊲ Use smaller mask.
6: end if
7: end procedure

Placement groups are assigned to OSDs using CRUSH (see Chapter 5), apseudo-
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random data distribution function that efficiently maps each PG to an orderedlist of r OSDs

upon which to store object replicas. From a high level, CRUSH behaves similarly to a hash

function: placement groups are deterministically but pseudo-randomly distributed. Unlike a

hash function, however, CRUSH is stable: when one (or many) devices join or leave the clus-

ter, most PGs remain where they are; CRUSH shifts just enough data to maintaina balanced

distribution. In contrast, hashing approaches typically force a reshuffle of all prior mappings.

CRUSH also uses weights to control the relative amount of data assigned to each device based

on its capacity or performance.

Placement groups provide a means of controlling the level of replication declustering.

That is, instead of an OSD sharing all of its replicas with one or more devices (mirroring), or

sharing each object with different device(s) (complete declustering), the number of replication

peers is related to the number of PGsµ it stores—typically on the order of 100 in the current

system. As a cluster grows, the PG maskm can be periodically adjusted to “split” each PG

in two. Because distribution is stochastic,µ also affects the variance in device utilizations:

more PGs result in a more balanced distribution. More importantly, declusteringfacilitates

distributed, parallel failure recovery by allowing each PG to be independently re-replicated

from and to different OSDs. At the same time, the system can limit its exposure tocoincident

device failures by restricting the number of OSDs with which each device shares common data.

6.2.2 Cluster Maps

The cluster map provides a globally known specification of which OSDs are responsi-

ble for storing which data, and (more significantly) which devices are allowed to process object
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epoch: map revision
m: number of placement groups−1
up: OSD7→ { network address,down}
in: OSD 7→ { in, out}

crush: CRUSH hierarchy and placement rules

Table 6.1: Data elements present in the OSD cluster map, which describes both cluster state
and the distribution of data.

reads or updates. Each time the cluster map changes due to an OSD status change, the map

epochis incremented. Map epochs allow all parties to agree on what the current distribution

of data is, and to determine when their information is (relatively) out of data. Because cluster

map changes may be frequent, as in a very large system where OSDs failures and recoveries

are the norm, updates are distributed asincremental maps: small messages describing the dif-

ferences between two successive epochs. In most cases, such updates simply state that one or

more OSDs have failed or recovered, although in general they may includestatus changes for

many devices, and multiple updates may be bundled together to describe the difference between

distant map epochs.

6.2.2.1 Down and Out

The cluster map’s hierarchical specification of storage devices is complemented by

the current network address of all OSDs that are currently online and reachable (up), and in-

dication of which devices are currentlydown. RADOS considers an additional dimension of

OSD liveness:in devices are included in the mapping and assigned placement groups, while

out devices are not. For each PG, CRUSH produces a list of exactlyr OSDs that arein the

mapping. RADOS then filters out devices that aredownto produce the list of active OSDs for
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the PG. If the active list is currently empty, PG data is temporarily unavailable, and pending I/O

is blocked.

OSDs are normally bothup andin the mapping to actively service I/O, or bothdown

andout if they have failed, producing an active list of exactlyr OSDs. OSDs may also bedown

but still in the mapping, meaning that they are currently unreachable but PG data has not yet

been remapped to another OSD (similar to the “degraded mode” in RAID systems). Likewise,

they may beupandout, meaning they are online but idle. This facilitates a variety of scenarios,

including tolerance of intermittent periods of unavailability (e. g. an OSD reboot or network

hiccup) without initiating any data migration, the ability to bring newly deployed storage online

without using it immediately (e. g. to allow the network to be tested), and the ability to safely

migrate data off old devices before they are decommissioned.

6.2.3 Communication and Failure Model

RADOS employs an asynchronous, ordered point to point message passing library

for communication. For simplicity, the prototype considers a failure on the TCP socket to

imply a device failure, and immediately reports it. OSDs exchange periodic heartbeat messages

with their peers to ensure that failures are detected. This is somewhat conservative in that an

extended ethernet disconnect or a disruption in routing at the IP level willcause an immediate

connection drop and failure report. However, it is safe in that any failure of the process, host,

or host’s network interface will eventually cause a dropped connection.This strategy can be

made somewhat more robust by introducing one or more reconnection attemptsto better tolerate

network intermittency before reporting a failure. OSDs that discover that they have been marked
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downsimply sync to disk and kill themselves to ensure consistent behavior.

6.2.4 Monitors

All OSD failures are reported to a small cluster ofmonitors, which are jointly respon-

sible for maintaining the master copy of the cluster map. OSDs can request the latest cluster

map from or report failures to any monitor. When an OSD submits a failure report, it expects

to receive an acknowledgement in the form of a map update that marks the failed OSDdown

(or backup at a new address). If it does not get a response after a few seconds, it simply tries

contacting a different monitor.

In order to ensure that responses from all monitors are consistent, the monitor cluster

is based on the Paxos part-time parliament algorithm to preserve strong consistency between

replicas [54]. Unlike primary-copy or similar replication schemes, the Paxosalgorithm em-

phasizes the durability of updates over availability by requiring that a majority of monitors be

available before updates are possible. The monitor cluster simplifies pure Paxos somewhat by

allowing only a single update to be proposed at a time (much like Boxwood [63]), simplify-

ing the implementation, while also coordinating updates with aleasemechanism to provide a

consistent ordering of cluster map read and update operations.

The cluster initially elects aleaderto serialize map updates and manage consistency.

Once elected, the leader begins by requesting the map epochs stored by each monitor. Monitors

have a fixed amount of timeT (currently two seconds) to respond to the probe and join the

quorum. The leader ensures that a majority of the monitors are active and that it hasthe most

recent map epoch (requesting incremental updates from other monitors asnecessary), and then
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begins distributing short-term leases to active monitors.

Each lease grants active monitors permission to distribute copies of the clustermap to

OSDs or clients who request it. If the lease termT expires without being renewed, it is assumed

the leader has died and a new election is called. Each lease is acknowledgedto the leader upon

receipt. If the leader does not receive timely acknowledgements when a new lease is distributed,

it assumes an active monitor has died and a new election is called. When a monitorfirst starts

up, or finds that a previously called election does not complete after a reasonable interval, an

election is called.

When an active monitor receives an update request (e. g. a failure report), it first

checks to see if it is a new. If, for example, the OSD in question was alreadymarkeddown,

the monitor simply responds with the necessary incremental map updates to bringthe reporting

OSD up to date. New failures are forwarded to the leader, who serializes updates, increments

the map epoch, and uses the Paxos update protocol to distribute the update toother monitors,

simultaneously revoking leases. Once the update is acknowledged by a majority of monitors a

final commit message issues a new lease.1

The combination of a synchronous two-phase commit and the probe intervalT en-

sures that if the active set of monitors changes, it is guaranteed that all prior leases (which have

a matching termT) will have expired before any subsequent map updates take place. Conse-

quently, any sequence of map queries and updates will result in a consistent progression of map

versions—significantly, map versions will never “go backwards”—regardless of which moni-

tor messages are sent to and despite any intervening monitor failures, provided a majority of

1The integration of Paxos with a leasing mechanism is implemented as a genericservice and is used to manage
other critical state in Ceph, including the MDS cluster map and state for coordination client access to the file system.
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monitors is available.

6.2.5 Map Propagation

Because the RADOS cluster may include many thousands of devices or more,it is not

practical to simply broadcast map updates to all parties without unduly burdening the central

monitors. Fortunately, differences in map epochs are significant only when they vary between

two communicating OSDs (or between a client and OSD), which must agree on their proper

roles with respect to a particular PG. This property allows RADOS to distributemap updates

lazily by combining them with existing inter-OSD messages, shifting the distribution burden to

OSDs. Each OSD maintains a history of past map incrementals, tags all messages with its latest

epoch, and makes note of its peers’ epochs. If an OSD receives a message from a peer with

an older map, it shares the necessary incremental(s) to bring that peer in sync. Similarly, when

contacting a peer thought to have an older epoch, incremental updates are preemptively shared.

The heartbeat messages periodically exchanged for failure detection ensure that updates spread

quickly—in O(logn) time for a cluster ofn OSDs.

For example, when an OSD first boots, it begins by informing a monitor that is has

come online, and sends its current map epoch. The monitor cluster changesthe OSD’s status to

up, and replies with the incremental updates necessary to bring the OSD fully upto date. When

the new OSD begins contacting OSDs with whom it shares data (see Section 6.3.5.1), the exact

set of devices who are affected by its status change learn about the appropriate map updates.

Because a booting OSD does not yet know which epochs its peers have,it shares a safe recent

history (e. g.at least 30 seconds) of incremental updates.
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This preemptive map sharing strategy is conservative: an OSD will alwaysshare an

update when contacting a peer unless it is certain the peer has already seen it, resulting in OSDs

receiving duplicates of the same update. However, the number of duplicates an OSD receives

is bounded by the number of peers it has, which is in turn determined by the number of PGsµ

it manages. In practice, I find that the actual level of update duplication is much lower than this

(see Section 6.4.1.3).

6.3 Reliable Autonomic Storage

RADOS replicates each data object on two or more devices for reliability and avail-

ability. Replication and failure recovery are managed entirely by OSDs through a version-based

consistency scheme utilizing short-term update logs. A peer to peer recovery protocol avoids

any need for controller-driven recovery, facilitating a flat cluster architecture with excellent

scalability.

6.3.1 Replication

Storage devices are responsible for update serialization and write replication, shifting

the network overhead associated with replication from the client network orWAN to the OSD

cluster’s internal network, where greater bandwidth and lower latenciesare expected. RA-

DOS implements primary-copy replication [3], chain replication [96], and a hybrid I call splay

replication that combines elements of the two. All three strategies provide strong consistency

guarantees, such that read and write operations occur in some sequential order, and completed
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Figure 6.3: Replication strategies implemented by RADOS. Primary-copy processes both reads
and writes on the first OSD and updates replicas in parallel, while chain forwards writes sequen-
tially and processes reads at the tail. Splay replication combines parallel updates with reads at
the tail to minimize update latency.

writes are reflected by subsequent reads.

With primary-copy replication, the first OSD in a PG’s list of active devices isthe

primary, while additional OSDs are calledreplicas. Clients submit both reads and writes to

the primary, which serializes updates within each PG. The write is forwardedto the replicas,

which apply the update to their local object store and reply to the primary. Once all replicas are

updated, the primary applies the update and replies to the client, as shown in Figure 6.3.

Chain replication separates update serialization from read processing. Writes are di-

rected at the first OSD (thehead), which applies the update locally and forwards it to the next

OSD in the list. The last OSD (thetail) responds to the client. Reads are directed at the tail,

whose responses will always reflect fully replicated (thus, safely applied) updates. For 2×

replication, this offers a clear advantage: only three messages and network hops are necessary,

versus four for primary-copy replication. However, latency is dependent on the length of the

131



Write

Delay write

Apply update

Ack

Commit to disk

Commit
T

im
e

Client Head Replica Tail

Figure 6.4: RADOS responds with anackafter the write has been applied to the buffer caches
on all OSDs replicating the object (shown here with splay replication). Only after it has been
safely committed to disk is a secondcommitnotification sent to the client.

chain, making the strategy problematic for high levels of replication.

Splay replication combines elements of the two. As with chain replication, updates

are directed at the head and reads at the tail. For high levels of replication,however, updates

to the middle OSDs occur in parallel, lowering the latency seen by the client. Both primary-

copy and splay replication delay the local write in order to maintain strong consistency in the

presence of an OSD failure, although splay must do so for less time, lowering OSD memory

requirements.

6.3.2 Serialization versus Safety

RADOS disassociates write acknowledgement from safety at all levels in order to

provide both efficient update serialization and strong data safety. This approach is illustrated in

Figure 6.4, which corresponds to the splay scheme shown in Figure 6.3 with an additional set

of messages. During a replicated write, each replica OSD sends anack to the tail immediately

after applying the update to the in-memory cache of the local EBOFS object store, and the

tail responds to the client with anackonly after all replicas have applied the update (as before).
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Later, when EBOFS provides each OSD with asynchronous notification that the update is safely

committed to disk, they send a second message to the tail, and only after all replicas have done so

is the client sent a finalcommit. The strategy is similar for the other schemes: with primary-copy

replication,acks andcommitsgo to the primary instead of the tail, and with chain replication,

only commitsgo to the tail (the replicated update itself is an implicitack).

Once clients receive anack, they can be sure their writes are visible to others, and

synchronous application level calls can typically unblock. Clients buffer all updates until a

commitis received, however, allowing clients to participate in recovery if all OSDsreplicating

the update fail, losing their in-memory (uncommitted) state.

6.3.3 Maps and Consistency

Tagging all RADOS messages—both those originating from clients and from other

OSDs—with the map epoch ensures that all update operations are applied in afully consistent

fashion. Because all replicas are involved in any given update operation, any relevant map

updates (i. e. any update that changes PG membership) will be discovered. Even if the master

copy of the cluster map has been updated to change a particular PGs membership, updates may

still be processed by the old members, provided they have not yet heard of the change. Because

a given set of OSDs who are newly responsible for a PG cannot becomeactive (i. e. recover or

service I/O) without consulting prior members or determining they are failed (see Section 6.3.5),

no updates can be lost, and consistency is maintained.

Achieving similar consistency for read operations is slightly less natural thanfor up-

dates. In the event of a partial network failure that results in an OSD becoming only partially
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Figure 6.5: Each PG has a log summarizing recent object updates and deletions. The most
recently applied operation is indicated bylast update. All updates abovelast completeare
known to have been applied, while any missing objects in the interval betweenlast complete
andlast updateare summarized in the missing list.

unreachable, the OSD servicing reads for a PG could be declared “failed” but still be reachable

by clients with an old map. Meanwhile, the updated map may specify a new OSD in its place.

In order to prevent any read operations from being processed by theold OSD after new updates

are be processed by the new one, we require timely heartbeat messages between OSDs in each

PG in order for the PG to remain available (readable). That is, if the OSD servicing reads hasn’t

heard from other replicas inH seconds, reads will block. Then, in order for a new OSD to take

over that role from another OSD, it must either obtain positive acknowledgement from the old

OSD (ensuring they are aware of their role change), or delay for the same time interval. In my

implementation, I choose a relatively short heartbeat interval of two seconds. This ensures both

timely failure detection and a short interval of PG data unavailability in the eventof a primary

OSD failure.
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6.3.4 Versions and Logs

RADOS uses versioning to identify individual updates and to serialize them within

each placement group. Each version consists of an(epoch,v)pair, whereepochreflects the map

epoch at the time of the update, andv increases monotonically. Each PG has alast update

attribute that reflects the most recently applied modification to one its objects, andeach object

has a similar version attribute to reflect the last time it was modified.

OSDs maintain a short-term log of recent updates (illustrated in Figure 6.5) for each

PG, stored both on disk and in RAM or NVRAM (if it is available). Each log entry includes

the object name, the type of operation (update, delete), a version number identifying the update,

and a unique request identifier consisting of the client name and a client-assigned identifier (not

shown). Unique identifiers allow OSDs to detect and ignore duplicate requests, rendering all

operations idempotent.

The first OSD in the PG serializes writes by assigning a new version number and

appending a new entry to its log. Because by definition only one OSD fills this role during

a single map epoch, versions are unique within each PG. The request is then forwarded along

with the version stamp to all other replica OSDs (or just to the next replica for chain replication).

An OSD processing an update always writes to the log immediately, even if it delays the write

for consistency. For this reason, the log may extend below thelast updatepointer (i. e. write-

ahead).

Log appends or pointer changes are written to disk wrapped in atomic EBOFStrans-

actions with the updates they describe, such that the log provides a perfect record of which
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updates were (and were not) committed before any crash (see Section 7.1). The log also forms

the basis for recovery when a PG is being brought up to date or replicatedto an entirely new

OSD. All updates below thelast completeare known to be applied locally, while amissing

list summarizes the latest versions of modified objects above it. OSDs periodically trim their

on-disk logs when requests have been fully flushed to disk on all replicasand clients have been

notified.

6.3.5 Failure Recovery

RADOS failure recovery is driven entirely by cluster map updates and subsequent

changes in each PG’s list of active devices. Such changes may be due todevice failures, re-

coveries, cluster expansion or contraction, or even complete data reshuffling from a totally new

CRUSH replica distribution policy—RADOS makes very few assumptions aboutwhat kind of

map changes are possible. For example, a PG might go from three OSDs to none (a complete

power failure) to one OSD (after partial power is restored) and then to twoentirely different

OSDs (a reorganization), and these changes may happen very quickly,without a sufficient in-

terval between each transition to allow recovery to complete. Moreover, when an OSD crashes

and recovers, EBOFS object store will be warped back in time to the most recent snapshot

committed to disk.

In all cases, RADOS employs a robustpeeringalgorithm to establish a consistent

view of PG contents and to restore the proper distribution and replication of data. This strategy

relies on the basic design premise that OSDs aggressively replicate the PG log and its record

of what the current state of a PGshouldbe (i. e. what object versions it contains), even when
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some object replicas may be missing locally. Thus, even if recovery is slow and object safety is

degraded for some time, PG metadata is carefully guarded, simplifying the recovery algorithm

and allowing the system to reliably detect data loss.

6.3.5.1 Peering

When an OSD receives a cluster map update, it walks through all new map incremen-

tals up through the most recent to examine and possibly adjust PG state values. Any locally

stored PGs whose active list of OSDs changes are markedinactive, indicating that they must

re-peer. Considering all map epochs (not just the most recent) ensures that intermediate data

distributions are taken into consideration: if an OSD is removed from a PG andthen added

again, it is important to realize that intervening updates to PG contents may haveoccurred. As

with replication, peering (and any subsequent recovery) proceeds independently for every PG

in the system.

The process is driven by the first OSD in the PG (theprimary). For each PG an OSD

stores for which it is not the current primary (i. e. it is a replica, or astraywhich is longer in the

active set), aNotify message is sent to the current primary. This message includes basic state

information about the locally stored PG, includinglast update, last complete, the bounds of the

PG log, andlast epochstarted, which indicates the most recent known epoch during which the

PG successfully peered.

Notify messages ensure that an OSD that is the new primary for a PG discovers its new

role without having to consider all possible PGs (of which there may be millions)for every map

change. Once aware, the primary generates aprior set, which includes all OSDs that may have
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participated in the PG sincelast epochstarted. Because this is a lower bound, as additional

notifies are received, its value may be adjusted forward in time (and the priorset reduced). The

prior set is explicitly queried to solicit a notify to avoid waiting indefinitely for a prior OSD

that does not actually store the PG (e. g. if peering never completed for an intermediate PG

mapping).

Armed with PG metadata for the entire prior set, the primary can determine the most

recent update applied on any replica, and request whatever log fragments are necessary from

prior OSDs in order to bring the PG logs up to date on active replicas. That is, the primary

must assemble a log that stretches from the oldest log bottom on active replicas to the newest

log bottom (most recent update) on any prior OSD. Because the log only reflects recent history,

this may not be possible (e. g. if the primary is new to the PG and does not have any PG

contents at all), making it necessary for the primary to generate or request abacklog. A backlog

is an extended form of the log that includes entries above thetop pointer (where the log was

last trimmed) to reflect any other objects that exist in the PG (i. e. on disk) but have not been

modified recently. The backlog is generated by simply scanning locally storedPG contents and

creating entries for objects with versions prior to the log top. Because it does not reflect prior

deletions, the backlog is only a partial record of the PG’s modification history.

Once the primary has assembled a sufficient log, it has a complete picture of the most

recent PG contents: they are either summarized entirely by the log (if it has a backlog), or the

recent log in combination with locally stored objects. From this, the primary updates itsmissing

list by scanning the log for objects it does not have (those updated after its previouslast update).

All OSDs maintain a missing list for active PGs, and include it when logs are requested by the
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primary. The primary can infer where objects can be found by looking at which OSDs include

the object in their log but don’t list it as missing.

Once the log and missing list are complete, the PG is ready to be activated. The

primary first sends a message to all OSDs in the prior set (but not in the active set) to update

last epochstarted. Once this is acknowledged, the primary sets its own PG toactive, and sends

a log fragment to each OSD in the active set to bring them up to date and mark them active

as well. Updatinglast epochstartedon residual OSDs implicitly renders themobsoletein that

they know the PG became active in an epoch after theirlast updateand their information is

likely out of date. In the future, a primary left with only obsolete information from its prior set

can opt to either consider itself crashed or, if an administrator is desperate, bring the PG online

with potentially stale data.

6.3.5.2 Recovery

A critical advantage of declustered replication is the ability to parallelize failurere-

covery [4, 112]. Replicas shared with any single failed device are spread across many other

OSDs, and each PG will independently choose a replacement, allowing re-replication to just as

many more OSDs. On average, in a large system, any OSD involved in recovery for a single

failure will be either pushing or pulling content for only a single PG, making recovery very fast.

The recovery strategy in RADOS is motivated by the observation that I/O is most

often limited by read (and not write) throughput. A simple recovery strategy isfor each OSD

to independently walk through its PG log and “pull” any objects on its missing list from other

OSDs, updatinglast completealong the way, until it reaches the bottom of the log. Although
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this strategy works (and was used by previous versions of the system), ithas two limitations.

First, if multiple OSDs are independently recovering objects in the same PG, theirre-

covery will not be synchronized. That is, they will probably not pull thesame objects from the

same OSDs at the same time, resulting in duplication of the most expensive aspect of recovery:

seeking and reading. Second, the update replication protocols (described in Section 6.3.1) be-

come increasingly complex if replica OSDs are missing the objects being modified.Although

the primary OSD can simply delay updates on missing objects until they are recovered (since

it is responsible for ordering requests), replicas do not have that flexibility, which significantly

complicates consistency logic.

For these reasons, recovery in RADOS is coordinated by the primary. Asbefore, op-

erations on missing objects are delayed until the primary has a local copy. Since the primary

already knows which objects all replicas are missing from the peering process, it can preemp-

tively “push” any missing objects that are about to be modified to replica OSDs, simplifying

replication logic while also ensuring that the object is only read once. If a replica is handling

reads, as in splay replication, requests for missing objects are delayed until the object can be

pulled from the primary. If the primary is pushing an object (e. g. in response to a pull request),

or if it has just pulled an object for itself, it will always push to all replicas that need a copy

while it has the object in memory. Thus, in the aggregate, every re-replicated object is read only

once.
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6.3.5.3 Client Participation

If a RADOS client has an outstanding (i. e. un-acked or un-committed) request sub-

mitted for a PG that experiences a failure, it will simply resubmit the request (with the same

unique request identifier) to the new PG primary. This ensures that if the request was not com-

pletely replicated or otherwise did not survive the failure, it will still be processed. If the OSD

discovers the request was already applied by the request’s presencein the log, it will consider

the operation ano-op, but will otherwise process (i. e. replicate) it normally so that the client

still receives anackandcommitwith the same associated promises.

6.3.5.4 Concurrent Failures

If all OSDs participating in a PG simultaneously fail, the PG is said to havecrashed,

and data becomes unavailable until at least one device comes back online (e. g.after a temporary

power failure). Recovery, however, is hindered by the probable lossof some updates that were

applied and serialized but existed only in RAM. This is problematic, because some clients may

have already read the applied (but uncommitted, and now lost) updates.

In order to preserve strong consistency in such situations, OSDs includethe version

associated with each update in the clientack, and the RADOS client buffers all updates it sub-

mits until a finalcommitis received. If a PG with which it has uncommitted updates crashes, the

client includes the previously assigned version with the resubmitted request.When a crashed

PG is recovering, OSDs enter areplay period for a fixed amount of time (e. g. 30 seconds)

after peering but before becoming active. The primary OSD buffers requests such that when the

replay period ends, it can reorder any requests that include versionsto reestablish the original
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order of updates.

From the client’s perspective, this preserves consistency: the versionnumber in the

ackallows the client to reassert the correct ordering (if need be), as long as the client doesn’t

fail before receiving acommit. As described, however, the strategy has a critical flaw that

compromises strong consistency semantics: if a read operation is allowed after the update is

applied and theackis sent, such that it sees the effects, but the OSD subsequently fails suchthat

the ack (and update version) never reaches the client, the client will be unable to reassert the

previously established (and witnessed) ordering. Although it is improbable, the asynchronous

messaging model makes such a scenario possible. In fact, it would be impossible for the OSD

to be sure the client received the ack without the client confirming it with an additional message

(like a two-phase commit) and an associated increase in latency and protocolcomplexity.

For this reason, RADOS can delay reads to uncommitted data, while taking stepsto

expedite their commit to disk (see Figure 6.6). This approach maintains a low latency for writes,

and only increases latency for reads if two operations are actually dependent (i. e. reference

overlapping byte ranges in a data object, a relatively rare occurrence inmost workloads [8,

77]). Alternatively, a small amount of NVRAM can be employed on the OSD for PG log

storage, allowing serialization to be preserved across power failures such that resubmitted client

operations can be correctly reordered, similarly preserving fully consistent semantics.

6.3.6 Client Locking and Caching

Although individual object updates are both strongly consistent and atomic, many

applications require atomicity across multiple objects [63, 100]. In contrast tosystems that
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Figure 6.6: Reads in shared read/write workloads are usually unaffected by write operations.
However, reads of uncommitted data can be delayed until the update commits. This increases
read latency in certain cases, but maintains a fully consistent behavior forconcurrent read and
write operations in the event that all OSDs in the placement group simultaneously fail and the
write ack is not delivered.

use a distributed lock manager [51, 86, 94, 107], RADOS locks are issued and enforced by

the OSDs that store objects. Read (shared) and write (exclusive) locksare implemented as

object attributes, and lock acquisition and release behave like any other object update: they are

serialized and replicated across all OSDs in the PG for consistency and safety. Locks can either

time out (i. e. be treated as leases) or applications can empower a third party to revoke onbehalf

of failed clients.

An ObjectCachermodule layers on top of the RADOS client to manage client lock

state and provide basic object caching services and multi-object updates.The ObjectCacher

transparently acquires the necessary locks to achieve proper cache consistency (read locks on

cached objects and write locks to allow write-back). Write locks can also be used to mask

latency associated with large updates: ordering is established when the lockis acquired, and is

released asynchronously as the data is written back to the OSD. Operationson multiple objects

practice deadlock avoidance during lock acquisition.
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Figure 6.7: Per-OSD write performance. The horizontal line indicates the upper limit imposed
by the physical disk. Replication has minimal impact on OSD throughput, although if the
number of OSDs is fixed,n-way replication reduces totaleffectivethroughput by a factor ofn
because replicated data must be written ton OSDs.

6.4 Performance and Scalability

I examine the performance, scalability, and failure recovery behavior ofthe RADOS

architecture. I begin by examining the performance of individual OSDs, and evaluate write la-

tency in light of the three replication strategies I implement. Scalability is considered indepen-

dently in terms of the specific performance-limiting factors. Finally, I discuss failure recovery

and its effect on system performance.

Performance tests are conducted using OSDs running on dual-processor Pentiums

with SCSI disks. In my experiments, RADOS achieves perfect linear scalingup to 24 OSDs,

after which throughput is limited by the network switch.

6.4.0.1 OSD Throughput

I first measure the I/O performance of a 14-node cluster of OSDs. Figure 6.7 shows

per-OSD throughput (y) with varying write sizes (x) and replication. Workload is generated by
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Figure 6.8: Write latency for varying write sizes and primary-copy replication. More than
two replicas incurs minimal additional cost for small writes because replicatedupdates occur
concurrently. For large synchronous writes, transmission times dominate. Clients partially mask
that latency for writes over 128 KB by acquiring exclusive locks and asynchronously flushing
the data.

400 clients on 20 additional nodes. Performance is ultimately limited by the raw diskbandwidth

(around 58 MB/sec), shown by the horizontal line. Replication doubles ortriples disk I/O,

reducing client data rates accordingly when the number of OSDs is fixed.

6.4.0.2 Write Latency

Figure 6.8 shows the synchronous write latency (y) for a single writer with varying

write sizes (x) and primary-copy replication. Because the primary OSD simultaneously re-

transmits updates to all replicas, small writes incur a minimal latency increase formore than

two replicas. For larger writes, the cost of retransmission dominates; 1 MB writes (not shown)

take 13 ms for one replica, and 2.5 times longer (33 ms) for three. High updatelatencies are

mitigated for writes over 128 KB with the client ObjectCacher module, which uses exclusive

locks to establish serialization for large writes, while flushing data to OSDs andreleasing locks

asynchronously. Under such circumstances, latencies are determined by the exchange of lock
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Figure 6.9: Latency for 4 KB writes under different replication strategies and levels of repli-
cation. Splay replication augments chain replication with parallel replica updates to achieve
performance similar to primary-copy replication for high levels of replication.

requests, providing latency for isolated large writes which approaches that of small writes.

Figure 6.9 shows the latency associated with different replication strategiesfor small

4 KB writes. Although chain replication offers the lowest latency for 2× replication, where a

minimum number of messages are exchanged, it performs poorly with large numbers of repli-

cas. Primary-copy masks the latency for replication above 2× by parallelizing updates. Splay

replication combines the best of both approaches—optimal message exchange for 2× and par-

allel updates with more replicas—with the added bonus of lowering memory utilization on the

tail OSD.

Figure 6.10 shows latency incurred per replica (y) for various replication levels (x)

with 1 MB writes. For large writes, the benefits of parallel updates are limited byper-device

bandwidth limitations. Here, the crossover point shifts from around 2× to 5×, giving chain

replication a slight edge.
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Figure 6.10: Normalized write latency per replica for 1 MB writes under different replication
strategies and levels of replication. Parallel replication does not improve latency for replications
levels below six.

6.4.1 Scalability

The scalability of RADOS is potentially limited by three primary factors: the qual-

ity of the data distribution generated by CRUSH, interaction with the monitor cluster, and the

effective distribution of cluster map updates. Other elements of the system are trivially par-

allelizable. In particular, failure detection, failure recovery, and replication are all bounded on

each OSD by the number of peers, regardless of the cluster size. For our purposes, I assert that a

sufficiently large and fast network can be constructed to service many thousands of OSDs [42].

CRUSH includes some provisions for segregating replication traffic (by keeping all replicas in-

side a suitably large domain), but I otherwise consider the network to be outside the scope of

this work.
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Figure 6.11: OSD write performance scales linearly with the size of the OSD cluster until the
switch is saturated at 24 OSDs. CRUSH and hash performance improves when more PGs lower
variance in OSD utilization.

6.4.1.1 Data Placement

As seen in Chapter 5, CRUSH produces a distribution of data that closely matches

the mean and variance of a binomial or normal distribution [101], meaning it appears random,

even though it is a deterministic and constrained mapping. The primary consequence is that

the varianceσ2 in the number PGs per OSD—and subsequently, in OSD storage utilizations

and workloads—is related to the average number of PGs per OSD (µ), whereσ2 ≈ µ. With an

average of 100 PGs per OSD, the standard deviationσ is 10%; with 1000 per OSD,σ drops to

3%. This behavior holds even for large clusters composed of heterogeneous (i. e. non-uniformly

weighted) devices.

Figure 6.11 shows per-OSD write throughput as the cluster scales using CRUSH, a

simple hash function, and a linear striping strategy to distribute data in 4096 or 32768 PGs

among available OSDs. Linear striping balances load perfectly for maximum throughput to

provide a benchmark for comparison, but like a simple hash function, it failsto cope with
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device failures or other OSD cluster changes. Because data placement with CRUSH or a hash is

stochastic, throughputs are lower with fewer PGs: greater variance in OSD utilizations causes

request queue lengths to drift apart under this entangled client workload.

Although a probabilistic data distribution means that some devices may become over-

loaded (i. e. handle many more thanµ PGs) with small probability, PGs can be explicitly

diverted away from specific devices using the overload mechanism in CRUSH. Unlike the hash

and linear strategies, CRUSH also minimizes data migration under cluster expansion while

maintaining a balanced distribution.

Most importantly, the computational cost of calculating a CRUSH mapping isO(logn)

for a cluster of sizen, allowing mappings in the tens of microseconds for even extremely large

clusters.

6.4.1.2 Monitor Interaction

The monitor cluster is designed both for extreme reliability and for high availability.

In the general case, monitors do very little work—they process small messages in response to

failures, but are otherwise idle. A worst case load for the monitor cluster occurs when large

numbers of OSDs appear to fail in a short period. If each OSD storesµ PGs andf OSDs fail,

then an upper bound on the number of failure reports generated is on the order of µ f , which

could be very large if a large OSD cluster experiences a network partition.To prevent such

a deluge of messages, OSDs throttle and batch failure reports, imposing an upper bound on

monitor load proportional to the cluster size.

Although failures may be reported to multiple random monitors multiple times, only
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the first few reports of a given failure will be forwarded to the elected lead monitor. Map up-

dates are quickly propagated among monitors such that subsequent reports of the same failures

will be reflected by the current map and result in an immediate response to the OSD. For this

reason, OSDs send heartbeats to peers at semi-random intervals to stagger detection of failures,

dispersing reports for a given failure over time. Furthermore, map updates returned to a report-

ing OSDs will also reflect all other failures processed to date, preventingsome future failure

reports from being sent.

6.4.1.3 Map Propagation

The RADOS map distribution algorithm (Section 6.2.5) ensures that updates reach all

OSDs after only logn hops. However, as the size of the storage cluster scales, the frequency of

device failures and related cluster updates increases. Because map updates are only exchanged

between OSDs who share PGs, the hard upper bound on the number of copies of a single update

an OSD can receive is proportional toµ.

In simulations under near-worst case propagation circumstances with regular map

updates, I found that update duplicates approach a steady state even withexponential cluster

scaling. In this experiment, the monitors share each map update with a single random OSD,

who then shares it with its peers. In Figure 6.12 I vary the cluster sizex and the number of

PGs on each OSD (which corresponds to the number of peers it has) andmeasure the number

of duplicate map updates received for every new one (y). Update duplication approaches a

constant level—less than 20% ofµ—even as the cluster size scales exponentially, implying

a fixed map distribution overhead. I consider a worst-case scenario in which the only OSD
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Figure 6.12: Duplication of map updates received by individual OSDs as the size of the cluster
grows. The number of placement groups on each OSD effects number ofpeers it has who may
share map updates.

chatter consists of ping messages for failure detection, which means that, generally speaking,

OSDs learn about map updates (and the changes known by their peers) as slowly as possible.

Limiting map distribution overhead thus relies only on throttling the map update frequency,

which the monitor cluster already does as a matter of course.

6.4.2 Failure Recovery

Figure 6.13 shows write throughput over time as a cluster of 20 (real) OSDsrecovers

from two (simulated) failures at time 30. 30 clients are writing data with 2× replication and

saturating the cluster. As the failed OSDs are initially marked down, replication throughput

drops because affected PGs are temporarily unreplicated, while effective client write perfor-

mance correspondingly increases. At time 50 the OSDs are marked out andrecovery is initi-

ated. Performance drops while active and then inactive objects are re-replicated to other OSDs,
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Figure 6.13: Write throughput over time as a saturated 20 OSD cluster recovers from twoOSD
failures at time 30. Data re-replication begins at time 50 and completes at time 80.
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Figure 6.14: Write throughput over time as an unsaturated 20 OSD cluster recovers from one
OSD failure at time 30 and two more at time 80.
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but throughput eventually returns to a level slightly below baseline (due to the two missing

OSDs). The throughput penalty associated with recovery is exaggerated in this experiment for

two reasons. First, in such a small cluster, all OSDs either share data with thefailed devices,

or are selected as replacements in one or more PGs. In a large system, eachOSD failure will

initiate recovery for only a single PG (of a hundred or more) on each of its peers. Second, the

relatively naive implementation currently makes almost no attempt to balance recovery with

regular workload. Nevertheless, recovery proceeds quickly in parallel and the cluster resumes

performing at only a slightly degraded level after about 30 seconds.

This is evident in Figure 6.14, which shows first one and then two OSDs failures on

an only partially loaded cluster. The first recovery minimally effects throughput both because

more disk bandwidth is available and because fewer PGs contain data to be replicated. The

second recovery involves more PGs and more data, with a greater impact on performance.

6.5 Future Work

Although RADOS was developed for use in the Ceph distributed file system [100],

the reliable and scalable object storage service it provides is well-suited for a variety of other

storage abstractions. In particular, the current interface based on reading and writing byte ranges

is primarily an artifact of the intended usage for file data storage. Objects might have any query

or update interface or resemble any number of fundamental data structures. Potential services

include distributed B-link trees that map ordered keys to data values (as in Boxwood [63]),

high-performance distributed hash tables [90], or FIFO queues (as in GFS [30]).
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Although RADOS manages scalability in terms of total aggregate storage and ca-

pacity, this dissertation does not address the issue of many clients accessing a single popular

object. I have implemented aread sheddingmechanism which allows a busy OSD to shed reads

to object replicas for servicing, when the replica’s OSD has a lower load and when consistency

allows (i. e. there are no conflicting in-progress updates). Heartbeat messages exchange infor-

mation about current load in terms of recent average read latency, suchthat OSDs can determine

if a read is likely to be service more quickly by a peer. This facilitates fine-grained balancing in

the presence of transient load imbalance, much like D-SPTF [62]. Notably,this read shedding

is only possible with primary-copy replication, as the OSD servicing reads must be aware of

any in-progress writes in order to preserve consistency. Although preliminary experiments are

promising, a comprehensive evaluation has not yet been conducted.

More generally, the distribution of workload in RADOS is currently dependent on the

quality of the data distribution generated by object layout into PGs and the mapping of PGs to

OSDs by CRUSH. Although I have considered the statistical properties of such a distribution

and demonstrated the effect of load variance on performance for certain workloads, the interac-

tion of workload, PG distribution, and replication can be complex. For example, write access to

a PG will generally be limited by the slowest device storing replicas, while workloads may be

highly skewed toward possibly disjoint sets of heavily read or written objects. I have conducted

only minimal analysis of the effects of such workloads on efficiency in a cluster utilizing declus-

tered replication, or the potential for techniques like read shedding to improve performance in

such scenarios.

Although total device failure is addressed, OSDs do not currently consider partial
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failures, like corrupted disk blocks. Checksums or preemptive mechanismslike disk scrubbing

would dramatically improve data safety.

The integration of intelligent disk scheduling, including the prioritization of repli-

cation versus workload and quality of service guarantees, is an ongoingarea of investigation

within the research group [109].

6.6 Related Work

Most distributed storage systems utilize centralized metadata servers [1, 14,30] or

collaborative allocation tables [86] to manage data distribution, ultimately limiting system scal-

ability. For example, like RADOS, Ursa Minor [1] provides a distributed object storage service

(and, like Ceph, layers a file system service on top of that abstraction). In contrast to RADOS,

however, Ursa Minor relies on an object manager to maintain a directory of object locations and

storage strategies (replication, erasure coding, etc.), limiting scalability and placing a lookup in

the data path. RADOS does not provide the same versatility as Ursa Minor’s dynamic choice of

timing and failure models, or support for online changes to object encoding(although encod-

ing changes are planned for the future); instead, RADOS focuses on scalable performance in a

relatively controlled (non-Byzantine) environment.

The Sorrento [93] file system’s use of collaborative hashing [47] bears the strongest

resemblance to RADOS’s application of CRUSH. Many distributed hash tables(DHTs) use

similar hashing schemes [21, 80, 90], but these systems do not provide thesame combination

of strong consistency and performance that RADOS does.
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For example, DHTs like PAST [80] rely on an overlay network [81, 90, 114] in order

for nodes to communicate or to locate data, limiting I/O performance. More significantly, ob-

jects in PAST are immutable, facilitating cryptographic protection and simplifying consistency

and caching, but limiting the systems usefulness as a general storage service. CFS [21] utilizes

the DHash DHT to provide a distributed peer-to-peer file service with cryptographic data pro-

tection and good scalability, but performance is limited by the use of the Chord [90] overlay

network. In contrast to these systems, RADOS targets a high-performance cluster or data cen-

ter environment; a compact cluster map describes the data distribution, avoiding the need for an

overlay network for object location or message routing.

Most existing object-based storage systems rely on controllers or metadata servers

to perform recovery [14, 68], or centrally micro-manage re-replication [30], failing to leverage

intelligent storage devices. Other systems have adopted declustered replication strategies to

distribute failure recovery, including OceanStore [52], Farsite [2], and Glacier [37]. These

systems focus primarily on data safety and secrecy (using erasure codes or, in the case of Farsite,

encrypted replicas) and wide-area scalability (like CFS and PAST), but not performance.

FAB (Federated Array of Bricks) [82] provides high performance by utilizing two-

phase writes and voting among bricks to ensure linearizability and to respondto failure and

recovery. Although this improves tolerance to intermittent failures, multiple bricks are required

to ensure consistent read access, while the lack of complete knowledge ofthe data distribu-

tion further requires coordinator bricks to help conduct I/O. FAB can utilize both replication

and erasure codes for efficient storage utilization, but relies on the useof NVRAM for good

performance. In contrast, RADOS’s cluster maps drive consensus and ensure consistent access
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despite a simple and direct data access protocol. RADOS’s cluster map bears some resemblance

to layout epochs in Palladio [35]: epoch numbers version views of the cluster membership and

state, per-store layouts resemble RADOS’s PGs and tolerance of cluster map differences when

they are not significant, and similar policies guide failure handling and updates. Unlike Palla-

dio, however, RADOS manages cluster maps using a Paxos-like protocol among a dedicated

cluster of monitors, and distributes updates with a lazy map distribution approachthat is tightly

integrated with the data access protocol. This simplifies consensus management, while also

avoiding the distributed search and manager selection mechanisms required by Palladio to arbi-

trate access to healthy stores and recovery from failure. In contrast toboth FAB and Palladio,

RADOS provides high-performance access to data via a comparatively simple read and update

protocol, and (of course) exposes an object-based (instead of block-based) interface.

Wiesmannet al. [105] compare replication in distributed systems and databases,

including those that rely onatomic broadcastor view synchronous broadcastgroup communi-

cation primitives to simplify consistency management. RADOS does not utilize atomic broad-

cast or similar primitives because comparable ordering guarantees are provided by the use of a

primary copy and ordered message delivery. RADOS’s primary copy approach is analogous to

eager primary copy database solutions like that in INGRES [91], although incontrast to repli-

cated databases, replicated storage systems benefit from deterministic updates and inexpensive

updates, while the processing associated with databases transactions suggests alternative ap-

proaches. This distinction is illustrated in a performance comparison of database replication

strategies based on total order broadcast later conducted by Wiesmannet al. [106]: the per-

formance of active replication schemes (in which each node processes the update) suffers rel-
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ative to alternative (e. g. certification) schemes in which a single node calculates the result

and broadcasts the results to replicas. Significantly, replication in RADOS further differs from

primary-copy replication as described by Wiesmann in that load remains balanced despite a

fixed (per-PG) primary due to declustering.

Version-driven consistency and logs are used in many primary-copy replication sys-

tems. Like RADOS, Harp [61] uses logs to facilitate efficient recovery from transient failures,

and utilizes a limited form of decoupled replication (administrators must manually partition data

into sub-volumes). However, although Harp relies on write-ahead logs and UPS to preserve both

performance and consistency, RADOS simply delays update application on thereadable replica,

and dissociates synchronization from safety to preserve performance. Reneseeet al. describe

a recovery mechanism for chain replication [96] that utilizes a log-like structure, although their

use of synchronous updates vastly simplifies possible failure modes, and does not address ar-

bitrary changes in the data distribution. Other brick-based storage systemsrely on a two-phase

commit to maintain update consistency [107] that (like FAB’s voting) incur a costin latency

and complexity. PRACTI replication [9] generalizes a range of consistency models and replica

placement strategies, but like the systems above, does not address the complexity of doing so in

a large-scale environment without a centrally managed metadata directory.

Sorrento utilizes version-basedconsistencymodel that targets an environment with

minimal write sharing; when update conflicts do arise, conflicting transactionsare rolled back

by simply discarding newer versions. This optimistic approach simplifies updates in the general

case at the expense of strong consistency, resulting in an interface in which application open-

modify-close sequences may fail to commit and require a retry. In contrast,RADOS writes
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are serialized and replicated by a primary OSD, avoiding concurrent update conflicts entirely

simply by altering the flow of data.

Seneca [46] is an asynchronous remote-mirroring protocol that supports write coa-

lescing and asynchronous propagation; these features are primarily useful when a slow, wide-

area network link separates replicas and when replica consistency is allowed to diverge based

on some bounded time interval. In contrast, RADOS is designed for a cluster environment

with high speed links, and keeps all replicas consistent by applying updates synchronously.

(Although write coalescing could be used to improve recovery performance, RADOS does

not yet implement this optimization.) Jiet al. also present a taxonomy for remote mirroring

which can be applied to a range of replication strategies; RADOS can be described as in-order

asynchronous propagation, with no inter-LU (placement group) ordering, no divergence, and

full write-through (although Ji’s taxonomy does not capture RADOS’ two-phase acknowledge-

ment).

Previous systems have provided an abstract distributed object store. One of the ear-

liest is Thor [60], which focused on extending the object (as in object-oriented programming)

paradigm in a distributed environment with the notion of persistent objects. BuddyCache [10]

provides strong consistency semantics and caching for distributed applications, but it targets

small cooperating peer groups and wide area networks. Other systems relax consistency con-

straints [30] and target widely distributed and weakly connected environments [48, 53]. In

contrast, RADOS targets a large, dedicated storage cluster.

Kybos [107] provides a distributed storage service using bricks and network RAID,

with an emphasis on resource (storage and bandwidth) reservation and online adjustment of
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placement to meet those requirements. In contrast, RADOS employs a pseudo-random distri-

bution (corrected to limit variance and avoid overload) to avoid the metadata associated with

defining explicit mappings between individual objects and devices, facilitating scalability and

avoiding directory lookup. Kenchammana-Hosekoteet al. evaluate a range of approaches to

data path, consistency, and atomicity in a simulated network RAID system [49].Although

parity-based redundancy differs from simple replication, their analysis ispartially applicable to

RADOS. Notably, they observe that shifting serialization to an OSD avoids network saturation

when client bandwidth is limited, and that the choice of data path is orthogonal tomulti-object

atomicity. In particular, a two-phase commit strategy for atomic multi-object updates—which

is planned but not yet supported by RADOS—has little performance penaltyin most circum-

stances.

Xin et al. [112] propose the use of distributed recovery as a means of improving data

safety, and conduct a quantitative analysis of system reliability with FaRM, adeclustered repli-

cation model in which—like RADOS—data objects are pseudo-randomly distributed among

placement groups and then replicated by multiple OSDs, facilitating fast parallel recovery. They

find that distributed recovery improves reliability at scale, particularly in the presence of rela-

tively high failure rates for new disks (“infant mortality”). Lianet al. [59] find that reliability

further depends on the number of placement groups per device, and that the optimal choice is re-

lated to the amount of bandwidth available for data recovery versus devicebandwidth. Although

both consider only independent failures, RADOS leverages CRUSH to mitigate correlated fail-

ure risk with failure domains.
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6.7 Conclusions

RADOS provides a scalable and reliable object storage service without compromising

performance. By separating serialization from safety, the architecture provides strong consis-

tency semantics to applications by minimally involving clients in failure recovery.

RADOS utilizes a globally replicated cluster map that provides all parties with com-

plete knowledge of the data distribution, typically specified using a function likeCRUSH. This

avoids the need for object lookup present in conventional architectures, which RADOS lever-

ages to distribute replication, consistency management, and failure recovery among a dynamic

cluster of OSDs while still preserving consistent read and update semantics. A scalable failure

detection and cluster map distribution strategy enables the creation of extremelylarge storage

clusters, with minimal oversight by the tightly-coupled and highly reliable monitor cluster that

manages the master copy of the map.

Because clusters at the petabyte scale are necessarily heterogeneousand dynamic,

OSDs employ a robust recovery algorithm that copes with any combination ofdevice failures,

recoveries, or data reorganizations. Recovery from transient outages is fast and efficient, and

parallel re-replication of data in response to node failures limits the risk of data loss.
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Chapter 7

Local Object Storage

Low-level object storage on individual OSDs is managed by EBOFS, an Extent and B-

tree based Object File System. Although a variety of distributed storage architectures leverage

existing general-purpose file systems [14, 55] such as ext3 [95], both the performance and

the standard POSIX file system interface and safety semantics are inappropriate for RADOS.

Because EBOFS is implemented entirely in user-space and interacts directly witha raw block

device, it is unencumbered by an unwieldy kernel file system interface, and avoids interaction

with the (Linux) VFS inode and page caches, which were designed around a different storage

abstraction and workload assumptions. This allows EBOFS to optimize specifically for object

workloads [97].

7.1 Object Storage Interface

EBOFS exposes a unique low-level storage interface that forms the basisof RADOS’s

strong consistency and safety model. Objects are accessed via a simple file-like interface that
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provide simple read and write access to byte extents (〈o f f set, length〉 pairs). Objects can be

members of zero or more namedcollections, which are indexed to allow efficient enumeration

or changes in membership (used by RADOS to manage placement groups). Both objects and

collections accept namedattributes, which map an identifier to an variable length (but normally

small) piece of data.

In contrast to conventional file systems, EBOFS exposes an interface that supports

compound transactions that allow a sequence of operations to be groupedinto a single atomic

operation.1 A single transaction may, for instance, write data to multiple objects, adjust collec-

tion membership, update object and collection attributes, and be certain that after a failure the

operation will be either fully completed or never started. Similarly, transactionscan read both

object data and attribute values atomically without fear of race conditions. This allows RADOS

to apply an object update, modify the object version, update the PGlast update, and append an

entry to the PG log in a single atomic transaction, keeping PG metadata perfectly synchronized

with data.

EBOFS writes are usually non-blocking, applying changes to the in-memory cache

and returning immediately. Because critical metadata is kept in memory, operationsblock only

when the buffer cache is full and data is being flushed out to disk, allowingRADOS to quickly

apply updates to establish ordering semantics without waiting for disk I/O. EBOFS provides

asynchronous notification via a callback when changes are safely committedto stable storage.

1Although many kernel-based file systems support compound transactions or group commit internally for effi-
ciency, they do not expose a transaction interface to applications.
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7.2 Data Layout

Like most modern file systems [40, 92], EBOFS usesextentsto keep metadata effi-

cient. In most cases, writes are laid out on disk in large, contiguous and singular extents. Free

extents are binned by size and sorted, allowing the allocator to utilize a “closest good fit” strat-

egy in which a free extent of approximately the size required is allocated near related data or the

current write position on disk. This facilitates efficient streaming writes and future read access

while minimizing long-term fragmentation.

A generalized B-tree [19] library is used to manage most storage metadata, including

the free extent lists and the object and collection tables which map object identifiers toonode

andcnodelocations on disk. Eachonodecontains the metadata for an individual object, includ-

ing attributes, collection membership, and the list of extents containing object data. Collection

cnodesstore collection attributes. A single large B-tree is currently used to map a collection ID

to the objects it contains.

7.3 Data Safety

EBOFS maintains two superblocks, updated in an alternating fashion, to reference

current file system metadata. All other data and metadata is always written to unallocated re-

gions on disk, similar to soft updates [64] and copy-on-write B-tree updates in WAFL [40]. At

the end of eachcommit cycle, all pending changes are flushed to disk before the next superblock

is written with references to the new metadata. Pending changes are trackedsuch that subse-

quent writes do not block while waiting for prior epochs to commit. On mount, EBOFS simply
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chooses the newer superblock, secure in the knowledge that it references a fully consistent

snapshot of the most recently committed file system state.

In contrast to conventional file systems, which typically keep newly written data in

cache before flushing it to disk (in the hopes that it will be modified again or deleted), Ceph

clients perform this function before submitting I/Os to the object store. For thisreason, EBOFS

aggressively schedules disk writes, and cancels pending disk I/O whensubsequent write or

delete operations render them obsolete. This approach maximizes the length of our I/O queues

for greater scheduling efficiency, and ensures that data reaches disk as quickly as possible.

7.4 Journaling

EBOFS can optionally employ an auxiliary journal to reduce the commit latency of

object updates. Although the separation of serialization and safety in the storage interface

largely masks the commit latency associated with the periodic cycle, certain applications (e. g.

metadata journaling) rely on both the safety and low latency of writes.

The EBOFS journal is stored on an independent storage device—ideally,one backed

by NVRAM—than the rest of the file system. The device is structured as a single ring buffer:

once the write pointer reaches the end of the device, it starts over again atthe beginning. The

journal “tail” pointer is adjusted to reclaim journal storage after each commit cycle completes

and older journal entries are no longer needed. If the journal device fills up prematurely, journal-

ing is temporarily disabled for the duration of the commit cycle until it can be safely restarted.

Each update transaction processed by EBOFS is applied first to the in-memory cache,
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Figure 7.1: Performance of EBOFS compared to general-purpose file systems. Although small
writes suffer from coarse locking in the prototype, EBOFS nearly saturates the disk for writes
larger than 32 KB. Since EBOFS lays out data in large extents when it is writtenin large incre-
ments, it has significantly better read performance.

then queued for write in the journal. The final commit callback occurs when the journal event

flushes to the journal backing device, or when the next commit cycle completes—whichever

comes sooner. For small writes in particular, this offers a significant improvement in perfor-

mance. For large writes that are I/O bound at the disk, the duplication of datain both the journal

and the primary storage device limits the journal’s effectiveness.

7.5 Evaluation

Figure 7.1 compares the performance of EBOFS to that of general-purpose file sys-

tems (ext3, ReiserFS, XFS) in handling a Ceph workload. Clients synchronously write out

large files, striped over 16 MB objects, and read them back again. Although small read and

write performance in EBOFS suffers from coarse threading and locking, EBOFS very nearly
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saturates the available disk bandwidth for writes sizes larger than 32 KB, and significantly out-

performs the others for read workloads because data is laid out in extentson disk that match

the write sizes—even when they are very large. Performance was measured using a fresh file

system. Experience with an early EBOFS design suggests it will experiencesignificantly lower

fragmentation than ext3, but I have not yet evaluated the current implementation on an aged file

system.

7.6 Related Work

The design of EBOFS is based largely on the design of existing file systems. Most

notably, these include XFS [92] and WAFL [40]. EBOFS, like XFS, utilizes extents and B-trees

to manage allocation and metadata. EBOFS commit strategy is similar to that found in WAFL.

Likewise, EBOFS’s journal is very similar to that used by WAFL in filers containing NVRAM.

Notably, the loss of the journal (e. g.failure of an NVRAM battery) compromises the durability

of writes during the last commit cycle, but does not affect the consistencyof the rest of the file

system.

Like FFS and most file systems that followed, EBOFS attempts to keep related data

and metadata together. However, instead of employing explicit cylinder groups, EBOFS sorts

the free extent maps by position to locate available storage space that is nearrelated data or

metadata.

Although the first incarnation of EBOFS was implemented within the Linux kernel,

the implementation was moved to user-space largely based on experience with OBFS [97],
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another object-based file system that demonstrated excellent performance outside the kernel by

bypassing the kernel page cache with the theO DIRECT interface.

7.7 Conclusion

EBOFS provides a reliable, high-performance storage service for local object storage

on Ceph OSDs. It is based on a copy-on-write strategy that avoids overwriting any data on disk

until it has been deallocated, facilitating fast crash recovery by ensuring that the on-disk image

is consistent at all times. Its storage interface tailored specifically to the needs of RADOS, no-

tably including asynchronous notification of update commits to disk and support for compound

transactions. This facilitates atomic compound updates to both data and metadata and to mul-

tiple objects, which are used by RADOS to keep PG metadata (such as the PG log, discussed

in Section 6.3.4) consistent with object data. EBOFS includes support for ajournal stored on

an auxiliary storage device to faciliate fast update commits. It is implemented entirelyin user

space.
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Chapter 8

Conclusion

I conclude this dissertation by first considering additional avenues of research, and

then summarizing the work presented here.

8.1 Future Work

Although the design and implementation described in this work is relatively complete—

the file system is functional and the implementation can properly tolerate most combinations of

failures—there are a number of planned augmentations and opportunities for future research.

8.1.1 MDS Load Balancing

One of the largest lessons in Ceph was the importance of the MDS load balancer to

overall scalability, and the complexity of choosing what metadata to migrate where and when.

Although in principle the design and goals seem quite simple, the reality of distributing an

evolving workload over a hundred MDSs highlights additional subtleties. Most notably, MDS
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performance has a wide range of performance bounds, including CPU,memory (and cache ef-

ficiency), and network or I/O limitations, any of which may limit performance at any point in

time. Furthermore, it is difficult to quantitatively capture the balance between total through-

put and fairness; under certain circumstances unbalanced metadata distributions can increase

overall throughput [102].

8.1.2 Client Interaction

The basic protocol used by the client to communicate with the MDS cluster takes a

few basic steps to minimize interaction. For example, areaddir operation returns both dentry

names and inode contents, facilitating areaddirplusinterface or optionally relaxing strict client

consistency to improve application performance. However, the operation of the MDS is still

fundamentally synchronous: clients are not issued any leases to keep their metadata caches

consistent. Experience with other file systems has shown that such techniques can be quite

effective; in most workloads there are typically a small number of directories that are read-only

and heavily shared (e. g./usr).

A mechanism currently exists to delegate and call back client capabilities to facilitate

exclusive, read-only, or read-write sharing of file data; it is likely that reusing this mechanism on

a coarse per-directory basis could capture a relatively substantial improvement in metadata per-

formance. A more generalized metadata leasing mechanism would likely prove more effective,

although it would be more complicated to implement.

Systems like Envoy [79] seek to migrate metadata management to the same hardware

node as the client application. Although this is technically feasible given the Ceph MDS ar-
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chitecture, the security and failure recovery implications of doing so have not been carefully

considered.

8.1.3 Security

The current implementation does not include any kind of distributed security—security

enforcement resembles that of NFS, in which servers trustuid andgid values embedded in each

client request. Although the architecture is based on a capability model to facilitate a strong

security infrastructure, OSDs do not yet validate capabilities. Two security architecture and

protocol variants have been proposed for Ceph [57, 69], and one has been partially implemented

(for a single-MDS system).

8.1.4 Quotas

Pollacket al. [50] describe a scalable distributed quota enforcement architecture that

is designed to work with distributed storage systems. Their architecture is based on crypto-

graphically signedvouchers, generated by a quota server, that clients can redeem with OSDs

in order to store data. Used vouchers are tracked and later reconciled,while the system further

places bounds on clients’ ability to “cheat” through voucher re-use. Work is currently underway

to implement this scheme in Ceph.

8.1.5 Quality of Service

Wu et al. [110] describe a quality of service framework designed to isolate the

performance of different classes of workloads concurrently accessing the system. EBOFS is
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augmented with QoS-aware disk scheduling, while the statistically uniform distribution of load

provided by CRUSH is leveraged to approximate global class-based isolation. Research is on-

going in this area to further provide end-to-end performance managementwith stronger bounds

on performance [24].

8.1.6 Snapshots

One of my ulterior motives for introducing the anchor table mechanism was to pro-

vide a generic means of making inodes globally addressable. Although this was necessary for

support of multilink files, I also plan to use it to facilitate a flexible form of “snapshots” that can

be applied at any time to arbitrary subtrees of the file system hierarchy. My hope is to introduce

time extents to dentry identifiers in order to easily integrate management of namespace snap-

shots into the existing MDS, while simultaneously introducing an object-granularity versioning

abstraction to the distributed object store.

8.2 Summary

As the scalability and performance requirements for storage systems increase, system

designers must look to new architectures to meet those demands, in many cases abandoning

conventional approaches. I have described Ceph, a distributed file system that provides excellent

performance, reliability, and scalability. Ceph’s design eschews a numberof conventions in file

system design dating back to early Unix in order to push the bounds of reliableand scalable

performance.

172



Metadata in Ceph is managed by a distributed, adaptive, fault-tolerant cluster of meta-

data servers (MDSs) that collectively forms a high-performance consistent cache of the file sys-

tem namespace (Chapter 4). Metadata is stored with file metadata (inodes) embedded inside

their containing directories, and each MDS maintains an extremely large journal, dramatically

improving the I/O profile generated by a busy MDS server, while support for POSIX hard links

is preserved through an auxiliary table. Workload is partitioned in terms of thefile system

namespace—made possible in part by the embedded inode strategy—allowing the cluster to

adapt to changing file system workloads to effectively utilize available resources.

Scalability and self-management in RADOS is made possibly in part through the

use of CRUSH, and specialized data distribution function that logically takes of the place of a

conventional allocation table. CRUSH (described in Chapter 5) allows the location of a data

object to be cheaply calculated when it is needed, eliminating the need to store object locations

in a table or query a directory service. CRUSH provides functionality similar toa hash function,

while taking additional steps to ensure that object locations are stable when devices fail or join

the cluster. Most importantly, the algorithm addresses reliability in the presence of correlated

failures through the use of a flexible, hierarchical placement strategy.

RADOS (Chapter 6) enables the management of a large, dynamic cluster of stor-

age devices by distributing data replication, failure detection, and failure recovery to intelligent,

semi-autonomous devices. A cluster map ensures a consistent view of cluster state and data lay-

out, facilitating consistent read and update semantics despite a lazy update propagation scheme.

This allows replication, failure detection, and recovery to be managed in a decentralized and

scalable fashion, with minimal oversight from the tightly-coupled cluster of monitors responsi-
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ble for the master copy of the cluster map. The update protocol separates synchronization from

safety in order to improve performance while preserving strong consistency and data safety

semantics, enabling excellent performance, data safety, and scalability in adynamic cluster

environment.

In addition to describing key enabling components of Ceph’s design, I have evaluated

a working prototype of the system under a range of benchmarks and real-world workloads,

demonstrating excellent performance, reliability, and system scalability.
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Appendix A

Communications Layer

A.1 Abstract Interface

Message passing in Ceph is based on a simple abstract messaging interfacethat de-

fines node addressing and naming, methods for sending and receiving messages, and a notifica-

tion mechanism for handling delivery failures.

Each node in Ceph has both a logical name and a network address associated with it.

The logical name (e. g. mds0, osd1) will typically remain the same across restarts, as it refers

to the node’s role in the system, while the address is (by design) unique for every incarnation

of a daemon or process participating in the system. The address consists ofthe IP address

and port used for sending messages to the given node, as well as a (typically random) nonce

value to keeps the address unique, even across starts. This allows othernodes in the system to

easily determine whether a peer has restarted (and potentially lost shared state) by comparing

addresses.1

1In certain cases, the nonce values are not used. The monitors’ address nonce values are fixed at 0 since commu-
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A.2 SimpleMessenger

SimpleMessenger is an implementation of the abstract communications interface that

utilized TCP for message transport. The use of TCP naturally provides reliable, ordered deliv-

ery as well as notification of communication faults (in the form of connection drops). When a

message is queued for a new peer, a TCP session is established, and the peers identify them-

selves to ensure that their nonce values match and the address is not stale.Once established,

messages can be passed across the same TCP session in both directions. An orderly connection

teardown process is used to shut down the session to ensure that no messages are lost.

The implementation currently makes no attempt to retry in the event of a commu-

nications error, which makes it relatively vulnerable to certain types of intermittent network

problems. For example, packet loss is tolerated relatively well (eventually causing a timeout),

while routing changes can cause an immediate TCP session drop. Although explicit message

receipt acknowledgement and buffering of outgoing messages would allow the implementation

to transparently attempt reconnect and redelivery without violating the ordering requirements,

this has not yet been implemented.

A.3 FakeMessenger

FakeMessenger is an alternate implementation of the messaging interface that isused

for debugging purposes. Messages are exchanged between logicalentities existing within a sin-

gle process’s address space. Because no inter-process communication mechanism is provided,

nication with the monitors is stateless.
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multiple logical system components (OSDs, metadata servers, clients, monitors)are compiled

and executed within the same process. Sent messages are simply added to in-memory queues,

and later delivered in a round-robin fashion that ensures that only a single message is begin

processed at a time (for ease in debugging).
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Appendix B

MDS Implementation Details

This appendix describes certain elements of the MDS implementation in greater de-

tail. In particular, I describe the structure of the distributed cache and the mechanisms through

which replication consistency is preserved in the face of failure.

B.1 MDS Distributed Cache

Central to the dynamic subtree partitioning approach is the treatment of the file system

as a hierarchy. The file system is partitioned by delegating authority for subtrees of the hierarchy

to different metadata servers. Delegations may be nested: /usr may be assigned to one MDS,

for instance, while /usr/local is reassigned to another. In the absence ofan explicit subtree

assignment, however, the entire directory tree nested beneath a point is assumed to reside on the

same server.

Implicit in this structure is the process of hierarchy traversal in order fornested in-

odes to be located and opened for subsequent descent into the file hierarchy. Such path traversal
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is also necessary to verify user access permissions for nested items as required by POSIX se-

mantics. Although this process may seem costly for locating a file deep within the directory

hierarchy, the locality of reference typical of both scientific and general purpose computing

workloads [28, 98] allows those costs to be amortized over subsequent accesses to the same

directories. More importantly, unlike LH permission management [15], a hierarchically defined

structure allows the system to move or change the effective permissions of arbitrarily sized

subtrees of the directory tree by modifying the relevant ancestor directory with fixed cost. Like-

wise, individual subtrees of the hierarchy are fully independent fromtheir siblings; semantics

are dependent only on the prefix (ancestor) directories leading to the root of the file system.

B.1.1 Cache Structure

All metadata that exists in the cache is attached directly or indirectly to the root in-

ode1. That is, if the /usr/bin/vi inode is in the cache, then /usr/bin, /usr, and / aretoo, including

the inodes, directory objects, and dentries. Only leaf items may be expired from the cache;

directories may not be removed until items contained within them are expired first. This al-

lows permission verification for all known items to proceed without any additional I/O costs,

and for hierarchical consistency to be preserved. It also facilitates theembedding of inodes in

directories.
1Metadata may also be rooted by astray inode; see section B.1.1.3.
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B.1.1.1 Directory Fragments

Directory contents are managed in terms of one or more directory fragments (dir

frags) that are associated with each directory inode. In most cases, there is a single fragment

that contains the full directory contents. In certain cases, however, directory contents are broken

up to ease load balancing. Each directory fragment is stored in a different object in the object

store, allowing them to be managed completely independently of each other.

Fragments are described by a binary split tree (afrag tree) stored in the directory

inode. Each directory fragment corresponds to afrag, which is defined by a bit pattern and

mask. Much like network names and masks in IP networking, the mask specifieswhich bits

are significant and compared to the bit pattern. For example, frag 12/4 is a 4bit mask and a

matching bit pattern of 12 (1100 in binary). Directory entries are mapped intofragments by

hashing the filename to an integer value and then matching that against all fragments in the

fragtree.2

Because the cache structure is defined such that a directory inode has any number

of children (depending on its fragmentation level), the subtree partitioning mechanisms can be

leveraged to individually delegate directory fragments to other nodes in the cluster. This allows

all of the existing infrastructure for migration and failure recovery to be re-used, while providing

a simple internal abstraction for breaking large or busy directory into smallerpieces.

2The implementation is considerably more efficient than this sounds; mapping a hash value to a fragment in a
fragtree isO(logn), wheren is the number of fragments.
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B.1.1.2 Dentries and Inodes

Each directory fragment is a collection directory entries, or dentries. Because Ceph

embeds inodes into the directories that reference them, this gives rise to two types of dentries.

The first (or only) dentry to reference an inode is called theprimary, and is always accompanied

by the inode itself.Remotedentries reference an inode by number only; an additional lookup

in the anchor table may be required to locate the inode itself. Anull dentry is also possible (at

least in-memory) to capture caching or locking state for a name that is does not (yet) reference

an inode but it still of interest (e. g. for replicating knowledge of a name’s non-existence), or to

capture thedirty state for a deleted file.

B.1.1.3 The “Stray” Directory

Because the cache is structured such that all inodes are associated with aprimary

dentry, management of files that are open for I/O but have been unlinkedfrom the namespace

present a problem. Maintaining the primary dentry/inode relationship is desirable because of

the subtree-based approach for partitioning workload and the existing metadata storage infras-

tructure.

To maintain that arrangement, unlinked files are moved into a hiddenstraydirectory if

it is not possible for them to be immediately removed. Each MDS maintains a separate stray di-

rectory inode (with potentially many directory fragments), allowing operationsthat unlink files

from the namespace to proceed locally on each MDS. Stray directory inodes have predictable

numbers (based on the MDS node), allowing discovery and replication of stray metadata on

other MDS nodes, and allowing unlinked inodes to be referenced by the anchor table.
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B.1.2 Replication and Authority

The authority maintains a list of what nodes cache each inode. Additionally, each

replica is assigned a nonce (initial 0) to disambiguate multiple replicas of the same item (see

below).

map<int, int> replicas; // maps replicating mds# to nonce

The replicas setalwaysincludes all nodes that cache the particularly object, but may

additionally include nodes that used to cache it but recently trimmed it from theircache. In

those cases, an expire message should be in transit. We have two invariants:

1. The authority’s replica set will always include all actual replicas, and

2. cache expiration notices will be reliably delivered to the authority.

The second invariant is particularly important because the presence of replicas will

pin the metadata object in memory on the authority, preventing it from being trimmed from

the cache. Notification of expiration of the replicas is required to allow previously replicated

objects to eventually be trimmed from the cache as well.

Each metadata object has a authority bit that indicates whether it is authoritative or

a replica. Although this information is also discernible from the subtree partition, the bits are

faster to check and provide an additional sanity check for debugging.

Each replicated object maintains a ”nonce” value, issued by the authority atthe time

the replica was created. If the authority has already created a replica forthe given MDS, the new

replica will be issues a new (incremented) nonce. This nonce is attached to cache expirations,
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and allows the authority to disambiguate expirations when multiple replicas of the same object

are created and cache expiration is coincident with replication. (In certaincases, the authority

may push a new replica to another MDS to ensure that a replica exists there for some operation.)

That is, when an old replica is expired from the replicating MDS at the same time that a new

replica is issued by the authority and the resulting messages cross paths, theauthority can tell

that it was the old replica that was expired and effectively ignore the expiration message. A

replica is removed from the authority’s replicas map only if the nonce matches.

B.1.3 Subtree Partition

Authority of the file system namespace is partitioned using a subtree-based partition-

ing strategy. This strategy effectively separates directory inodes fromdirectory contents, such

that the directory contents are the unit of re-delegation. That is, if / is assigned to mds0 and

/usr to mds1, the inode for /usr will be managed by mds0 (it is part of the / directory), while the

contents of /usr (and everything nested beneath it) will be managed by mds1.

The description for this partition exists solely in the collective memory of the MDS

cluster and in the individual MDS journals. It is not described in the regular on-disk metadata

structures. This is related to the fact that authority delegation is a property of the directory

fragmentand not the directory’sinode.

Subsequently, if an MDS is authoritative for a directory inode and does not yet have

any state associated with the directory in its cache, then it can assume that it is also authoritative

for the directory.

Directory state consists of a data object CDir that describes any cached dentries con-
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tained in the directory, information about the relationship between the cachedcontents and what

appears on disk, and any delegation of authority. Each CDir object has adir auth element. Nor-

mally dir auth has a value of AUTHPARENT, meaning that the authority for the directory is

the same as the directory’s inode. When dirauth specifies another metadata server, that direc-

tory is point of authority delegation and becomes asubtree root. A CDir is a subtree root IFF

its dir auth specifies an MDS id (and is not AUTHPARENT). That is,

1. A dir is a subtree root IFF dirauth != AUTH PARENT.

2. If dir auth = AUTH PARENT then the inode auth == dir auth, but the converse may not

be true.

The authority for any metadata object in the cache can be determined by following

the parent pointers toward the root until a subtree root CDir object is reached, at which point

the authority is specified by its dirauth.

Each MDS cache maintains a subtree data structure that describes the subtree partition

for all objects currently in the cache:

map< CDir*, set<CDir*> > subtrees;

A dirfrag (represented by a CDir) will appear in the subtree map (as a key) IFF it is a

subtree root. The map value is a set of all other subtree roots nested immediately beneath that

point. Nested subtree roots effectively bound or prune a subtree. Forexample, if we had the

following partition:
MDS Path
mds0 /
mds1 /usr
mds0 /usr/local
mds0 /home
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The subtree map on mds0 would be
Subtree Bounds
/ (/usr, /home)
/usr/local ()
/home ()

and on mds1:

Subtree Bounds
/usr (/usr/local)

B.2 Metadata Storage

Ceph metadata is stored in regular objects in the shared object store. This is advan-

tageous primarily because it keeps all metadata in a shared medium, facilitating migration of

metadata authority between nodes and recovery in the event of failure. Metadata resides both in

the per-MDS journals and primary per-directory fragment objects (see Chapter 4).

B.2.1 Directory Fragments and Versioning

Metadata updates that exist in the MDS journal but not in the regular metadataobjects

are calleddirty and pinned in the MDS cache. In order to keep track of which updates have

been committed, each inode, dentry, and dir object in the MDS cache maintains aversion value.

Versions are generated relative to the directory fragment that contains them, since that is the

underlying unit for metadata storage: when a cache item is dirtied, its new version value is

generated by incrementing the directory fragment version.

Each directory fragment maintains four version values:version, the current version;

projectedversion, the anticipated version pending updates that are still being journaled; and

committingversionand committedversion, the last versions to be queued for or commit to
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disk. The projected version values are assigned to updates that are currently being written to the

journal, but have not yet been applied to the in-memory metadata cache (andwhose side-effects

are thus not yet visible). Thus,committed<= committing<= version<= pro jected.

The committed version normally indicates the version of the directory that is written

to stable storage on disk. Any directory entry or inode contained in the directory with a version

value greater than this should be flagged as dirty in the cache. After journal replay due to

an MDS recovery from a failure, however, the MDS does not know the committed version of

directory fragments it extracted from the journal (it would be expensiveto probe all of these

objects just to find out). In this case, the committed version is zero, and many cache items may

be marked as dirty (due to journaled updates) even though they were safely stored by the prior

incarnation of the MDS. When such a directory isfetchedfrom disk, it will compare dirty dentry

versions with the actual committed version and mark any unnecessarily dirty itemsclean.

When a directory item is removed, it is replaced by a (dirty and versioned)null dentry.

This ensures that the deletion is reflected in the cache until the directory is committed. Clean

null dentries can be safety trimmed.

Each directory fragment has acompleteflag that indicates whether all directory con-

tents are currently cached. If any non-null item is expired from the cache, the flag is cleared.

Currently, directory fragments can only be committed to disk in their entirety, which means that

a fetch must sometimes be conducted (to fill in any missing contents) before a commit (i. e. a

read-modify-write). Partial commits will be made possible in the future by extending the object

interface to provide a key/value interface in addition to the simple byte extent (file-like) model.

A higher-resolution complete flag (e. g.one with a separate bit for different subsets of the den-
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try namespace, or a Bloom filter [11]) would allow create operations to safely proceed without

caching the complete directory fragment contents.

B.2.2 Journal Entries

Journal entries reflect metadata updates that have not yet beencommittedto the per-

directory metadata storage. Entries employ a commonmetablobstructure for describing meta-

data updates. Each metablob consists of one or more directory fragment IDs, dentries, and

inodes. Normally, each updated item in the metablob is accompanied by any ancestor metadata

necessary to connect it to the root of the current subtree. Journal trimming is constrained such

that at all times any non-obsolete journal entry is preceded by a SubtreeMap entry that includes

all subtree roots and bounds, with ancestor metadata up to the filesystem root.Thus, as long

as replay begins with a SubtreeMap, all included metadata can be placed properly within the

hierarchy.

Metadata objects in the metablob also include a few flags: namely, all items may be

marked dirty, and directory fragments may be markedcomplete. Thedirty flag simply sets the

object’s dirty flag when the entry is replayed after a failure, inducing an eventual commit of the

containing directory fragment. The complete flag likewise sets the fragment’s complete flag; it

is used only when migrating subtrees between MDS nodes when the fragment’s entire contents

are included in the metablob.

A few other metadata updates can be described by the metablob, allowing them tobe

committed atomically with other updates. These include anchor table transactions (see below),

inode number allocations, inode truncations, and client request identifiers(which are journaled
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to keep all operations idempotent from the perspective of the client).

B.2.3 Anchor Table

The anchor table is an auxiliary structure, managed by a single MDS, that allows in-

odes to be located within the directory hierarchy by their inode number. It is necessary because

Ceph lacks a conventional inode table that facilitates inode lookup by inode number. Inode

contents are always embedded in directories adjacent to a directory entrythat references them.

Because they can exist only in one place, that dentry is deemed theprimary dentry. Any addi-

tional remote dentriesrefer simply to the inode number.

Because there are no back pointers from the inode to reference remote dentries, and

because directory renames can affect arbitrarily large portions of the hierarchy, it is necessarily

to be able to locate the actual inode contents within the hierarchy with only an inode number.

This is accomplished byanchoringonly those inodes who have multiple hard links or directories

inodes with children having multiple hard links. The anchor table maintains back pointers with

reference counts for all anchored inodes to the directory fragment that contains them.

For example, if/usr/bin/nano and/usr/lib/ld.so have additional hard links,

the table might look like Figure B.1.

This simple structure for the anchor table keeps the overall size of the table relatively

small (particularly when considering that in most cases, very few inodes have multiple hard

links). It also is easy to update when directory renames effect large portions of the hierarchy:

only the backpointer for the renamed item, the reference count for its immediateold and new

parents, and any missing ancestors need to be updated in the table.
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Path Inode Parent Ref
/usr/bin/nano 123 12#0 1
/usr/bin 12 10#0 1
/usr/lib/ld.so 456 11#0 1
/usr/lib 11 10#0 1
/usr 10 1#0 2
/ 1 1

Table B.1: Sample anchor table with two anchored inodes. Note that the full path is shown
only for illustration and is not part of the table. The hash mark (#) in the parent column is used
to denote a particular fragment of the given directory, where 0 indicates the directory is not
fragmented. The /usr entry has a ref count of two because it is referenced by both /usr/bin and
/usr/lib.

Anchor table queries return all records necessary to reach the root for the given in-

ode. Updates are conducted with a two-phase commit. The anchor table MDS first journals a

prepareevent. The resulting transaction ID is included in the journaled metablob for theatomic

operation effecting the update, and acommitevent is later journaled by the anchor table MDS

to close the transaction.

B.3 Migration

B.3.1 Cache Infrastructure

B.3.1.1 Ambiguous Authority

While metadata for a subtree is being migrated between two MDS nodes, the dirauth

for the subtree root is allowed to be ambiguous. That is, it will specify both the old and new

MDS IDs to indicate that a migration is in progress.

If a replicated metadata object is expired from the cache from a subtree whose author-

189



ity is ambiguous, the cache expiration is sent to both potential authorities. This ensures that the

message will be reliably delivered, even if either of those nodes fails. A number of alternative

strategies were considered. Sending the expiration to the old or new authority and having it

forwarded if needed can result in message loss if the forwarding node fails. Pinning ambiguous

metadata in cache is computationally expensive for implementation reasons, anddelaying the

transmission of expiration messages is difficult to implement because the replicating MDS must

send the final expiration messages only when the subtree authority is disambiguated, forcing it

to keep certain elements of it cached in memory. Although duplicating expirationsincurs a

small communications overhead, the implementation is much simpler and easier to verify.

B.3.1.2 Auth Pins

Most operations that modify metadata must allow some amount of time to pass in

order for the operation to be journaled or for communication to take place between the object’s

authority and any replicas. For this reason it must not only be pinned in the authority’s metadata

cache, but also be locked such that the object’s authority is not allowed to change until the

operation completes. This is accomplished usingauth pins, which increment a reference counter

on the object in question, as well as all parent metadata objects up to the rootof the subtree. As

long as the pin is in place, it is impossible for that subtree (or any fragment ofit that contains

one or more auth pins) to be migrated to a different MDS node. Auth pins can be placed on

inodes, dentries, and directories.

Auth pins can only exist for authoritative metadata, because they are only created if

the object is authoritative, and their presence prevents the migration of authority.
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B.3.1.3 Freezing

More specifically, auth pins prevent a subtree from beingfrozen. When a subtree is

frozen, all updates to metadata are forbidden. This includes updates to thereplicas map that

describes which replicas (and nonces) exist for each object.

In order for metadata to be migrated between MDS nodes, it must first be frozen. The

root of the subtree is initially marked asfreezing. This prevents the creation of any new auth

pins within the subtree. After all existing auth pins are removed, the subtree isthen marked as

frozen, at which point all updates are forbidden. This allows metadata state to be packaged up

in a message and transmitted to the new authority, without worrying about intervening updates.

If the directory at the base of a freezing or frozen subtree is not also asubtree root (that

is, it has dirauth == AUTH PARENT), the directory’s parent inode is auth pinned. A frozen

tree root dir will authpin its inode IFF it is authoritative AND not a subtree root. This prevents

a parent directory from being concurrently frozen, and a range of resulting implementation

complications relating to determining the bounds of the frozen region.

B.3.1.4 Cache Expiration for Frozen Subtrees

Cache expiration messages that are received for a subtree that is frozen are temporar-

ily set aside instead of being processed. Only when the subtree is unfrozen are the expirations

either processed (if the MDS is authoritative) or discarded (if it is not). Because either the

exporting or importing metadata can fail during the migration process, the MDS cannot tell

whether it will be authoritative or not until the migration completes.

During a migration, the subtree will first be frozen on both the exporter andimporter,
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and then all other replicas will be informed of a subtree’s ambiguous authority. This ensures

that all expirations during migration will go to both parties, and nothing will be lost in the event

of a failure.

B.3.2 Normal Migration

The exporter begins by doing some checks in exportdir() to verify that it is permissi-

ble to export the subtree at this time. In particular, the cluster must not be degraded, the subtree

root may not be freezing or frozen, and the full path must be read locked (i. e. not conflicted with

a rename). If these conditions are met, the subtree root directory is temporarily auth pinned,

the subtree freeze is initiated, and the exporter is committed to the subtree migration, barring an

intervening failure of the importer or itself.

An MExportDiscover message sent from the exporter to the importer serves simply

to ensure that the inode for the base directory being exported is open on the destination node.

It is pinned by the importer to prevent it from being trimmed. This occurs before the exporter

completes the freeze of the subtree to ensure that the importer is able to replicate the necessary

metadata. When the exporter receives the MDiscoverAck, it allows the freeze to proceed by

removing its temporary auth pin.

The MExportPrep message then follows to populate the importer with a spanning tree

that includes all directories, inodes, and dentries necessary to reach any nested subtrees within

the exported region. This replicates metadata as well, but it is pushed out bythe exporter,

avoiding deadlock with the regular discover and replication process. Theimporter is responsible

for opening the bounding directory fragments from any third parties authoritative for those
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subtrees before acknowledging. This ensures that the importer has correct dir auth information

about where authority is re-delegated for all points nested beneath the subtree being migrated.

While processing the MExportPrep, the importer freezes the entire subtreeregion to prevent

any new replication or cache expiration.

A warning stage occurs only if the base subtree directory is open by nodes other

than the importer and exporter. If it is not, then this implies that no metadata within ornested

beneath the subtree is replicated by any node other than the importer an exporter. If it is,

then a MExportWarning message informs any bystanders that the authority for the region is

temporarily ambiguous, and lists both the exporter and importer as authoritativeMDS nodes.

In particular, bystanders who are trimming items from their cache must send MCacheExpire

messages to both the old and new authorities (see above). Lock-related messages are also

delayed until the authority is no longer ambiguous.

The exporter walks the subtree hierarchy and packages up an MExport message con-

taining all metadata and important state (e. g. information about metadata replicas). At the

same time, the exporter’s metadata objects are flagged as non-authoritative.The MExport mes-

sage sends the actual subtree metadata to the importer. Upon receipt, the importer inserts the

data into its cache, marks all objects as authoritative, and logs a copy of all metadata in an

EImportStart journal message. Once that has safely flushed to the journal, it replies with an

MExportAck. The exporter can now log an EExport journal entry, which ultimately specifies

that the export was a success. In the presence of failures, it is the existence of the EExport entry

only that disambiguates authority during recovery.

Once logged, the exporter will send an MExportNotify to any bystanders,informing
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them that the authority is no longer ambiguous and cache expirations should besent only to

the new authority (the importer). Once these are acknowledged back to the exporter, implicitly

flushing the bystander to exporter message streams of any stray expirationnotices, the exporter

unfreezes the subtree, cleans up its migration-related state, and sends a final MExportFinish to

the importer. Upon receipt, the importer logs an EImportFinish(true) (noting locally that the

export was indeed a success), unfreezes its subtree, processes any queued cache expirations,

and cleans up its state.

B.4 Failure Recovery

MDS recovery after a failure (e. g. host crash, process segfault, sufficiently long

network outage) is made possible by the journal kept by each MDS. Journal replay is compli-

cated, however, because not all state is written to the journal. Although all metadata updates are

logged, the state of the distributed cache (i. e. which nodes have in-memory replicas of which

metadata) is not. Furthermore, some metadata operations involve multiple metadata objects on

different MDS nodes, requiring a two-phase commit and a resolution stageduring recovery.

The full recovery process is broken down into four stages. During thereplaystage,

the MDS simply re-reads the contents of the journal, accumulating state in memory.During

the resolvestage, the fate of any two-phase updates are determined. Duringreconnect, client

sessions are reestablished. Finally, during therejoin stage, MDS nodes exchange information

about what metadata objects are replicated with peers in the cluster, reestablishing distributed

cache and lock state.
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Certain stages of the recovery occur with respect to therecovery set, the set of MDS

nodes that were participating in the cluster at the time of the first failure. Onceone failure has

occurred, the cluster is considereddegraded, and no new MDS nodes are allowed to join (unless

they are taking over for a failed node) or leave until all nodes have fully recovered.

B.4.1 Journal Replay

Journal replay is relatively straightforward. The Journaler interfaceis used to read and

write to a journal constructed with objects in the distributed object store, and probes the journal

size on its own. Replay begins at the last known expire point (the journal’ssize metadata is only

written periodically). Each journal event is read from the journal in sequence, and it’s replay()

method is called to recover its state. The only caveat to replay is that events prior to the first

SubtreeMap event are ignored. Once the first subtree map is replayed,the remainder of the

journal is processed in its entirety.

When replay completes, the MDS moves to theresolvestage, unless it is the only

MDS in the cluster, in which case it moves directly to thereconnectstage.

B.4.2 Resolve Stage

The resolvestage serves to disambiguate the fate any operations that span multiple

metadata servers. These include imports of subtrees of metadata (migrations from other MDS

nodes to the current node), updates to the anchor table, and client operations likerenameor

unlink that sometimes affect metadata managed by different MDS nodes.

An MDS entering the resolve stage begins by sending a Resolve message to all other
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resolving nodes in the recovery set. Surviving MDS nodes also send a Resolve message to any

MDS that enters the resolve stage. The Resolve message includes a summaryof all subtrees

currently managed by that node (specified as the root dirfrag and its list of bounds, if any), a

list of ambiguous imports (subtrees that were partially imported when the failureoccurred), and

a list of uncommitted slave request IDs (for updates initiated by the target MDS, but affecting

metadata on the recovering node). Ambiguous imports and uncommitted slave requests are

defined by the presence of aprepareevent in the journal but no matchingcommitted, or (in

the case of a surviving MDS sending a Resolve to a recovering MDS) by the corresponding

in-memory state.

The recovering MDS waits for Resolve messages from all other MDS nodes, assim-

ilating information about subtree authority for metadata it has recovered from the journal by

setting its CDir dirauth values appropriately. If the Resolve message lists uncommitted slave

requests, a ResolveAck message is sent in response that specifies which requests committed and

aborted. Ambiguous imports are noted, but not processed until all Resolve messages have been

processed. At that point, subtree authority ambiguities are be resolved bysimply checking if

authority for an ambiguous subtree is claimed by another node: if it is, the import clearly didn’t

complete.

Once subtree authority has been resolved, the recovering node trims all non-authoritative

metadata from its cache, with the exception of that necessary to connect authoritative subtrees

to the root. On recovery, the MDS has no way of knowing whether non-authoritative metadata

was subsequently updated, requiring all such metadata to be revalidated during the rejoin stage;

trimming non-authoritative metadata reduces the amount of metadata that must be exchanged,
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allowing that process to complete more quickly, and significantly simplifies the process.

B.4.3 Reconnect Stage

The recovering MDS next reestablishes connectivity with any clients with whom it

had open sessions at the time of the crash. It announces itself by sendingeach client a copy of the

current MDSMap (which specifies that the sending MDS is in the reconnectstate). In response,

each client sends an MClientReconnect, which lists any open files, their fullpathname, and

issued capabilities. This is necessary primarily because the MDS does not (synchronously)

journal file opens. Although the file inode number is often sufficient to restore state, the full

path name (noted by the client at the time the file was successfully opened) is included in case

the inode was not replayed from the journal (e. g. , it was not recently modified). The MDS

updates the inodefile lockstate such that it is compatible with the currently issued capabilities

(e. g. if multiple clients have the read and write capability bits, the lock is put in themixed

state).

B.4.4 Rejoin Stage

During therejoin stage, state about locks and the replication of metadata in memory is

reestablished between MDS nodes. This replication state is necessary forthe distributed MDS

cache and locking to function, but is too expensive to journal. Rejoin involves both recovering

MDS nodes (those that crashed and have replayed their journal) and those that have survived

(not failed).

A recovering MDS begins the rejoin process only after all other recovering nodes also
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reach the rejoin stage. At that point, each MDS sends a message summarizingwhat metadata it

replicates. Such messages come in two varieties:weakor strong, depending on whether it is a

recovering or surviving MDS, respectively. A recovering node expects a rejoin (either strong or

weak) from every other node in the cluster. Surviving MDS nodes sendstrong rejoin messages

to each recovering node only (i. e. not to other survivors).

B.4.4.1 Weak and Strong Rejoin

The initial rejoin message is a declaration of replication, sent from an MDS replicating

metadata to the metadata’s authoritative MDS. Aweak rejoinis sent by nodes recovering from

a failure. Rejoin messages are generated by walking all subtrees in the node’s subtree map for

which it is not authoritative, and declaring any replicated metadata object in the message bound

for its authority. The declarations consist of dirfrag identifiers (inode number and frag), dentry

names and types, and inode numbers. The weak rejoin also includes a list ofall locally open

files and capabilities that clients have declared during the reconnect stagethat do not fall within

subtrees the recovering node is authoritative for.

A strong rejoin is sent by surviving MDS nodes, and also includes the lock states

associated with each replicated object, any capabilities that are wanted by clients with locally

opened files, and any slave authpins or xlocks held by client requests currently being processed.

The strong rejoin does not include an enumeration of open files.

A recovering node may thus receive a combination of weak and strong rejoin mes-

sages, depending on whether its peers also suffered a failure. A surviving node will only receive

weak rejoins (from recovering nodes); surviving nodes have lost no shared state and do not re-
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join with each other.

When processing a weak rejoin, the MDS will check for any capability exports it

should claim. (Such client capabilities are migrated to the authoritative MDS much like they

are during a subtree migration.) If the inode does not already exist in the cache, it will add

the path to a list of inodes to load (see below; surviving nodes will always have the inode in

their cache). The MDS will then walk the list of replica declarations, adding the sender to the

appropriate metadata object replica maps. If the node is recovering, the dirlock on directories

will also be set to the SCATTER state to ensure that any remote mtime updates are captured.

If a surviving MDS node receives a weak rejoin (the sender is therefore a recovering

node), the rejoin consists of an exhaustive list of items replicated by the sender. The recipient

(survivor) takes the additional step of scouring its own cache for objects that were previously

replicated by the sender node but were not recovered from the journal, and adjusting their replica

maps accordingly.

Once a recovering node receives a rejoin from all other nodes, it fetches any metadata

for previously issued (or imported) capabilities from disk. Capability imports are then processed

(by updating the issued state and notifying the client). Finally, rejoin acks aregenerated for all

replicated metadata in the cache.

B.4.4.2 Ack

An ack message is generated in response to each weak or strong rejoin. The ack

contains a newly issued nonce for each replicated object, as well as the initial states to initialize

replica locks.
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If the rejoin recipient is a survivor, it can immediately respond with an ack, because

metadata object locks are in a known correct state. If the rejoin recipient isa recovering node,

however, it must first wait until all rejoins have been received beforeresponding, in case any of

its peers includes a strong declaration that forces a lock into a non-default state.

Once a recovering node receives all expected rejoins and acks, it moves from the

rejoin to theactivestate.

B.4.4.3 Missing and Full

It is possible that a strong rejoin will include declarations for replicated metadata

objects that are not in the recovering node’s local cache (i. e. were not in the journal). In

this case, it is less expensive to acquire those metadata objects from the surviving MDS node

than from disk. To allow the rejoin to proceed smoothly, the recovering nodesimply creates

any metadata objects that are missing, and flags inodes to indicate their contentsare (as yet)

undefined. The recovering node generates amissingmessage for the sender that lists any inodes

it lacked.

The surviving node responds with afull message that includes the full inode contents

(inode t struct, symlink target, and/or dirfrag tree).
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B.5 Anchor Table

B.5.1 Table Updates

Anchor table updates are based on a two phase commit. The MDS initiating an update

sends apreparerequest to the anchor table MDS. The prepare is identified by the inode number

and operation type; only one operation for each type (create, update, destroy) can be pending

per inode at any time. Both parties may actually be the same MDS node, but for simplicity we

treat that situation the same. (That is, we act as if they may fail independently, even though they

can’t.)

The anchor table journals the proposed update, and responds with anagreemessage

and a anchor table version number. This uniquely identifies the request.

The initiating MDS can then update the file system metadata however it sees fit (e. g.

to perform anunlink or rename). When it is finished and the operation has been journaled, it

sends acommitmessage to the anchor table. The table journals the commit, frees any state from

the transaction, and sends anack. The initiating MDS should then journal theack to complete

the transaction.

B.5.2 Failure Recovery

B.5.2.1 Anchor Table MDS Failure

If the anchor table fails before journaling theprepareand sending theagree, the

initiating MDS will simply retry the request.

If the anchor table fails after journalingpreparebut before journalingcommit, it will
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resendagreeto the initiating MDS.

If the anchor table fails after thecommit, the transaction has been closed, and it takes

no action. If it receives acommitfor which it has no open transaction, it will reply withack.

B.5.2.2 Initiating MDS Failure

If the MDS fails before the metadata update has been journaled, no action is taken,

since nothing is known about the previously proposed transaction. If anagreemessage is re-

ceived and there is no correspondingprepareor pending-commit state, androllback is sent to

the anchor table.

If the MDS fails after journaling the metadata update but before journaling theack, it

resendscommitto the anchor table. If it receives anagreeafter resending thecommit, it simply

ignores theagree. The anchor table will respond with anack, allowing the initiating MDS to

journal the finalackand close out the transaction locally.

On journal replay, each metadata update (metablob) encountered that includes an an-

chor transaction is noted in the anchor table client by adding it to the pendingcommit list, and

each journaledack is removed from that list. Journal replay may encounteracks with no prior

metadata update; these are ignored. When recovery finishes, acommitis sent for all outstanding

transactions.
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