
pgremapper: CRUSHing
cluster operational
complexity
Oct. 2023

Joshua Baergen, Fleet Storage

Contents
● Who Are We?
● An Augment Story
● The Problem
● A Solution!
● An Even Better Solution, in Theory

2012

2016

2017

What is
DigitalOcean?

3August 2021

A brief history

● Founded in 2012
● Core concept: Simplicity
● SSD backed VM was very attractive in 2012
● Four years later we introduce Volumes (block)
● Many more products since, including Spaces (object)

and several SaaS offerings such as DBaaS, DOKS (k8s),
App Platform, and Serverless Functions

● Datacenters in 9 regions, 14 total choices
● IPO in March 2021

Droplet: Introduction
of the SSD-backed
VM

Volumes: Ceph
backed attachable
Droplet storage

Spaces: Ceph backed
object storage

4

An Augment Story

When something simple goes wrong.

5

Let’s add four new hosts (24 disks
each) to this system:

● Bootstrap the hosts
● ceph osd set nobackfill
● ceph osd crush move host9

rack=rack1, etc.
● ceph osd unset nobackfill

An Augment Story

root

rack1 rack2

host2host1

rack3 rack4

host3 host4

host6host5 host7 host8

host10host9 host11 host12

6

Hmm, we should be able to run at least
96 backfills in parallel (one per target
disk), but only 25 are running.

● Let’s increase backfill
concurrency: ceph config set
osd osd_max_backfills 3

An Augment Story

$ ceph -s
…
2730 active+clean
1341 active+remapped+backfill_wait
25 active+remapped+backfilling
…

7

110 backfilling - that’s more like it!

It’s a bit odd that 110 != 25*3, but the
cluster seems fine so we leave for the
day.

An Augment Story

$ ceph -s
…
2730 active+clean
1256 active+remapped+backfill_wait
110 active+remapped+backfilling
…

8

We wake up to this the next morning.

● ceph config set osd
osd_max_backfills 1

● No sleep for the next week :(

An Augment Story

$ ceph -s
…
2840 active+clean
423 active+under…+degraded+remapped+backfill_wait
12 active+under…+degraded+remapped+backfilling
787 active+remapped+backfill_wait
34 active+remapped+backfilling
…

How does
this
happen?

9August 2021

The Problem

Brief Note on Ceph
Versions

10August 2021

To the best of our knowledge, the behaviour described in the
following slides applies to all recent versions of Ceph.

The Problem

The described behaviour
was studied most in
Luminous and Nautilus, and
Pacific behaves similarly.

We have less experience
with Quincy+ but we believe
they behave similarly
(though see next point).

The mClock scheduler
(available Pacific, default
in Quincy) may help a bit.

11

Lack of Backfill
Concurrency

11August 2021

Why did we we have to increase osd_max_backfills to get the expected
backfill concurrency?

In order to start a backfill, at least two reservations
must be made - one on the primary OSD, then one
on each backfill target OSD.

See the backfills on the right - A is backfilling, B has
the primary reservation but is waiting for target,
and C is stuck behind B.

Increasing osd_max_backfills increases the number of
reservations (primary/target) available for each OSD,
but more concurrency means more load.

The Problem

pg 1.a
pri: 1, tgt: 2
backfilling

osd.1 osd.2 osd.4osd.3

pg 1.b
pri: 3, tgt: 2
backfill_wait

wait

pg 1.c
pri: 3, tgt: 4
backfill_wait

wait

12

Backfill Source
Overload

August 2021

Once we increased osd_max_backfills, why did some backfills go
degraded?

As noted on the previous slide, there are at least
two backfill reservations: one on the primary OSD,
then one on each backfill target OSD.

There is no reservation made for the backfill
source. For EC PGs, the backfill data source is likely
not the primary OSD.

At any backfill concurrency, but especially at higher
concurrencies, a single source OSD can get overloaded
(leading to flaps and thus degradation, for example).

The Problem

$ ceph pg dump pgs_brief
PG STATE UP PRI ACTING
…
1.d active+...+backfilling [1,2,3,5] 1 [1,2,3,4]
1.e active+...+backfilling [6,2,1,7] 6 [6,4,1,7]
1.f active+...+backfilling [8,1,7,9] 8 [8,1,4,9]
1.g active+...+backfilling [5,3,1,8] 5 [5,4,1,8]
…

13

Waiting Recovery

August 2021

Wouldn’t it be nice if the relatively quick recovery could
complete ahead of backfill that blocks it?

Recovery uses the same reservation
mechanism as backfill.

Thus, long-running backfills can hold PGs degraded
for hours (or days!) when they would otherwise be
able to recover in seconds to minutes.

In turn, these recoveries can hold partial
reservations just like backfill, further reducing
backfill recovery.

The Problem

$ ceph pg dump pgs_brief
PG STATE UP PRI ACTING
…
1.d active+...+backfilling [1,2,3,5] 1 [1,2,3,4]
1.e ...+recovery_wait [1,2,6,7] 1 [1,2,6,7]
1.f ...+recovery_wait [1,8,7,9] 1 [1,8,7,9]
1.g ...+recovery_wait [1,3,5,8] 1 [1,3,5,8]
…

14

Degraded Backfill

August 2021

Recovery for a PG can hide behind an ongoing backfill.

PG 1.d on the right is moving data from OSD
3 to 4.

OSD 2 has restarted and needs recovery,
which would be much faster than a backfill.

However, its recovery won’t happen until the
backfill completes, resulting in an extended
reduction in durability.

The Problem

$ ceph pg dump pgs_brief
PG STATE UP PRI ACTING
…
1.d ...+degraded+backfilling [1,2,4] 1 [1,2,3]
…

Summary

15

Backfill incurred due to a CRUSH change can put the system
into an extended at-risk state.

The Problem

Backfill concurrency is hard to control
The reservation system leads to less concurrency than desired, and the
osd_max_backfills knob is too big of a hammer; it’s possible to end up
with too much concurrency for some OSDs.

Recovery can get held up by backfill
Because recovery uses the same reservation mechanism as backfill and
because backfill for a given PG won’t pause for any needed recovery on
that PG, systems can be in a degraded state much longer than they
need to be.

No way to stop once started
Once a CRUSH change occurs, there’s no way to get the system back
into an active+clean state without waiting for backfill to complete
(either rolling forward or back).

pgremapper

16August 2021

Control backfill via the upmap exception
table.

A Solution!

17

pgremapper

August 2021

A CLI tool that manipulates the upmap exception table
(Luminous+) in order to change what backfill is scheduled.

Open source, written in Go:
github.com/digitalocean/pgremapper

Inspired by CERN IT’s presentation in Nov. 2019 on
using the upmap exception table for backfill control.

We’ve extended CERN’s ideas in order to
support a broad range of usecases.

A Solution!

$ pgremapper .-help
Use the upmap to manipulate PG mappings (and thus
scheduled backfill)

18

pgremapper Design
- Mapping State

August 2021

pgremapper has an internal model of the upmap exception table
and an intuitive API for querying and manipulation of it.

Ceph’s upmap exception table API is simple - set table
entry to new value or remove table entry. However, this
can be tedious to manipulate manually.

On startup, pgremapper builds an internal representation of
this table and presents a simplified API (remap PG from OSD X
to Y), computing the final changes to the exception table.

The current state of the table can be queried (find
all PGs remapped to OSD Y), and changes can be
displayed in a diff format for dry-run purposes.

A Solution!

$ ceph osd dump | grep upmap | head -n 2
pg_upmap_items 1.7 [74,148]
pg_upmap_items 1.d [62,164]

ceph osd pg-upmap-items <pgid> <osdname
(id|osd.id)> .<osdname (id|osd.id)>...]

ceph osd rm-pg-upmap-items <pgid>

func (m *mappingState) remap(pgid string, from,
to int) - calculates required changes to
exception table

19

pgremapper Design
- Backfill State

August 2021

pgremapper also has an internal model of the current backfill
reservation state on a per-OSD basis.

Prior to Octopus, admin socket access is required
to query reservation state. Thus, pgremapper infers
reservation state from a PG dump.

As changes are made to the mapping state
(previous slide), the reservation model is also
updated.

Thus, one can ensure that backfill is not scheduled if it
would exceed supplied limits on backfills per OSD - no
more backfill_wait or overloaded source OSDs!

A Solution!

func (bs *backfillState) hasRoomForRemap(pgid
string, from, to int) bool - return whether the
proposed remapping will cause backfill that
exceeds supplied per-OSD limits

20

Putting It Together

August 2021

The drain command uses the mapping and backfill state in
order to safely move PGs off of the given source OSD.

Many of the command options take osdspecs -
a mixture of OSDs IDs and CRUSH buckets.

In the example on the right, pgremapper will
change the upmap exception table to move PGs
from OSD 14 to any number of OSDs on host5.

No more than 2 backfill reservations will be consumed on
primary/target OSDs (including any pre-existing backfill), but up to 5
backfills will be allowed on OSD 14 (as primary and/or source).

A Solution!

$ pgremapper drain <source OSD> .-target-osds
<osdspec>[,<osdspec.] [.-allow-movement-across
<bucket type.] [.-max-backfill-reservations
default_max[,osdspec:max]]
[.-max-source-backfills <n.]

$ pgremapper drain 14 .-target-osds bucket:host5
.-max-backfill-reservations 2,14:5
.-max-source-backfills 5

21

Let’s Try That
Augment Again!

August 2021

We can use cancel-backfill and undo-upmaps to schedule
augment backfill in a more orderly fashion.

cancel-backfill will create upmap exception table entries to
eliminate backfill (i.e. maps data back to acting OSDs). It even
works for some degraded PGs, changing them into recoveries!

undo-upmaps removes the exception table entries
we created above, following the rules we give it for
scheduling backfill.

Running undo-upmaps in a loop will maintain maximum
backfill concurrency; killing this loop and running
cancel-backfill returns the system to an active+clean state.

A Solution!

$ ceph osd set nobackfill
$ ceph osd crush move host9 rack=rack1, etc.
$ pgremapper cancel-backfill .> everything
active+clean!
$ ceph osd unset nobackfill
$ pgremapper undo-upmaps bucket:host9
bucket:host10 bucket:host11 bucket:host12
.-max-backfill-reservations 3
.-max-source-backfills 3 .-target

$ ceph -s
…
3808 active+clean
288 active+remapped+backfilling
…

Other Supported
Operations

22August 2021

The augment pattern - nobackfill, change CRUSH
map, cancel-backfill, unset nobackfill, then
undo-upmaps loop - can be used for many other
CRUSH changes: Weight changes, draining
OSDs/hosts for removal, etc.

A Solution!

balance-bucket:
Rebalance PGs in a
provided CRUSH bucket

import/export-mappings:
Save/restore a copy of
current upmap state in
json

remap: Convenience API
to apply a single
remapping
(source→target) to a PG

Additional Commands - see
GitHub README for usecase
examples:

23

Caveats

August 2021

pgremapper is not able to handle all situations.

Limited by what the upmap exception table is
capable of - not all desired changes are expressible
as upmaps. (see right)

Minor issue - if the system is still reacting to an
osdmap change (peering or about to peer),
pgremapper will not make the right decisions.

It probably struggles with exotic CRUSH maps
(e.g. linked OSDs), though we haven’t tried.

A Solution!

$ ceph pg dump pgs_brief
PG STATE UP PRI ACTING
…
1.d active+...+backfilling [1,2,3,4] 1 [1,4,3,2]
…

To cancel this backfill, one would need this
upmap entry, which is not supported by Ceph:
$ ceph osd pg-upmap-items 1.d 2 4 4 2

An Even
Better
Solution, In
Theory

24August 2021

What would it take to eliminate the need
for pgremapper?

A Better Solution

Lack of Backfill
Concurrency

25August 2021

Backfills/recoveries hold partial reservations, blocking
unrelated work from making progress.

A Better Solution

A common technique for
acquiring multiple locks is
to back off if one of the
locks is already held.

By doing this, no
backfill_wait PGs would hold
reservations, allowing others
to make progress.

Since pgremapper has a global
view, it can still make better
decisions, but the above
solution might be Good
Enough™.

Backfill Source
Overload

26August 2021

No reservation for EC backfill source means that some OSDs
can become overloaded.

A Better Solution

The straightforward
solution would be to add
reservations to backfill
sources.

This would exacerbate the
multiple reservation problem,
and so a solution for the
problem on the previous slide
would become more necessary.

Or should this be a
different reservation
category?

Waiting Recovery

27August 2021

Recovery, which would be fast-running, gets stuck behind
backfill.

A Better Solution

Option 1: Allow backfill
to be paused when
recovery is waiting.

Option 2: Allow some
reservation slots to be
set aside for recovery.

The second option is
simpler and probably
Good Enough™.

Degraded Backfill

28August 2021

OSDs that need recovery in a PG cannot do so until that PG’s
backfill completes.

A Better Solution

pgremapper is able to
turn these backfills
back into recoveries.

Thus, it seems possible to
change the PG state machine
to process the recovery
ahead of the backfill.

Probably the most
complicated of the
problems to solve. Worth
it?

Thank you

